1,709
Views
12
CrossRef citations to date
0
Altmetric
Special Report

Cellular Stress Responses in Protein Misfolding Diseases

Article: FSO42 | Published online: 23 Jul 2015

References

  • Soto C , EstradaLD. Protein misfolding and neurodegeneration. Arch. Neurol.65, 184–189 (2008).
  • Gidalevitz T , PrahladV, MorimotoRI. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Persp. Biol.3(6), pii: a009704 (2011) ( Epub ahead of print).
  • Gusella JF , MacDonaldME. Huntington's disease: seeing the pathogenic process through a genetic lens. Trends Biochem. Sci.31, 533–540 (2006).
  • Cattaneo E , ZuccatoC, TartariM. Normal huntingtin function: an alternative approach to Huntington's disease. Nat. Rev. Neurosci.6, 919–930 (2005).
  • Walker FO . Huntington's disease. Lancet369, 218–228 (2007).
  • Koshy BT , ZoghbiHY. The CAG/polyglutamine tract diseases: gene products and molecular pathogenesis. Brain Pathol.7, 927–942 (1997).
  • Cepeda C , WuN, AndreVMet al. The corticostriatal pathway in Huntington's disease. Progr. Neurobiol.81, 253–271 (2007).
  • Sieradzan KA , MannDM. The selective vulnerability of nerve cells in Huntington's disease. Neuropathol. Appl. Neurobiol.27, 1–21 (2001).
  • Sugars KL , RubinszteinDC. Transcriptional abnormalities in Huntington disease. Trends Genet.19, 233–238 (2003).
  • Krench M , LittletonJT. Modeling Huntington disease in Drosophila: insights into axonal transport defects and modifiers of toxicity. Fly7(4), 229–236 (2013).
  • Dhami GK , FergusonSS. Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol. Ther.111, 260–271 (2006).
  • Quintanilla RA , JohnsonGV. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Res. Bull.80, 242–247 (2009).
  • Li XJ , LiS. Proteasomal dysfunction in aging and Huntington disease. Neurobiol. Dis.43, 4–8 (2011).
  • Vonsattel JP , KellerC, Cortes RamirezEP. Huntington's disease – neuropathology. Handbook Clin. Neurol.100, 83–100 (2011).
  • Hoffner G , DjianP. Protein aggregation in Huntington's disease. Biochimie84, 273–278 (2002).
  • Fecke W , GianfriddoM, GaviraghiGet al. Small molecule drug discovery for Huntington's Disease. Drug Discov. Today14, 453–464 (2009).
  • Nucifora LG , BurkeKA, FengXet al. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J. Biol. Chem.287, 16017–16028 (2012).
  • Bodner RA , HousmanDE, KazantsevAG. New directions for neurodegenerative disease therapy: using chemical compounds to boost the formation of mutant protein inclusions. Cell Cycle5, 1477–1480 (2006).
  • Anckar J , SistonenL. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem.80, 1089–1115 (2011).
  • Shamovsky I , NudlerE. New insights into the mechanism of heat shock response activation. Cell. Mol. Life Sci.65, 855–861 (2008).
  • Pirkkala L , NykanenP, SistonenL. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J.15, 1118–1131 (2001).
  • Duennwald ML , LindquistS. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev.22, 3308–3319 (2008).
  • Cashikar AG , DuennwaldM, LindquistSL. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem.280, 23869–23875 (2005).
  • Herbst M , WankerEE. Small molecule inducers of heat-shock response reduce polyQ-mediated huntingtin aggregation. A possible therapeutic strategy. Neurodegener. Dis.4, 254–260 (2007).
  • Labbadia J , CunliffeH, WeissAet al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest.121, 3306–3319 (2011).
  • Bersuker K , HippMS, CalaminiBet al. Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J. Biol. Chem.288, 23633–23638 (2013).
  • Riva L , KoevaM, YildirimFet al. Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J. Huntington's Dis.1, 33–45 (2012).
  • Malhotra JD , KaufmanRJ. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol.18, 716–731 (2007).
  • Matus S , LisbonaF, TorresMet al. The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr. Mol. Med.8, 157–172 (2008).
  • Paschen W , MengesdorfT. Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium38, 409–415 (2005).
  • Leitman J , Ulrich HartlF, LederkremerGZ. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat. Commun.4, 2753 (2013).
  • Hou J , TangH, LiuZet al. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res.14(3), 481–494 (2014).
  • Liu Y , ChangA. Heat shock response relieves ER stress. EMBO J.27, 1049–1059 (2008).