1,406
Views
4
CrossRef citations to date
0
Altmetric
Special Report

Possible Roles of Amyloids in Malaria Pathophysiology

, , , , , , , & show all
Article: FSO43 | Published online: 24 Jul 2015

References

  • Cowman AF , CrabbBS. Invasion of red blood cells by malaria parasites. Cell124(4), 755–766 (2006).
  • Rovira-Graells N , GuptaAP, PlanetEet al. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res.22(5), 925–938 (2012).
  • Feng ZP , ZhangX, HanP, AroraN, AndersRF, NortonRS. Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes. Mol. Biochem. Parasitol.150(2), 256–267 (2006).
  • Adda CG , MurphyVJ, SundeMet al. Plasmodium falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils. Mol. Biochem. Parasitol.166(2), 159–171 (2009).
  • Iriemenam NC , KhirelsiedAH, NasrAet al. Antibody responses to a panel of Plasmodium falciparum malaria blood-stage antigens in relation to clinical disease outcome in Sudan. Vaccine27(1), 62–71 (2009).
  • Yang X , AddaCG, KeizerDWet al. A partially structured region of a largely unstructured protein, Plasmodium falciparum merozoite surface protein 2 (MSP2), forms amyloid-like fibrils. J. Pept. Sci.13(12), 839–848 (2007).
  • Chandrashekaran IR , AddaCG, MacRaildCA, AndersRF, NortonRS. EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2. Arch. Biochem. Biophys.513(2), 153–157 (2011).
  • Gebbink MF , ClaessenD, BoumaB, DijkhuizenL, WostenHA. Amyloids‐‐a functional coat for microorganisms. Nat. Rev. Microbiol.3(4), 333–341 (2005).
  • Maury CP . The emerging concept of functional amyloid. J. Intern. Med.265(3), 329–334 (2009).
  • Bannister LH , MitchellGH, ButcherGA, DennisED, CohenS. Structure and development of the surface coat of erythrocytic merozoites of Plasmodium knowlesi. Cell Tissue Res.245(2), 281–290 (1986).
  • Jayakumar R , KusiakJW, ChrestFJet al. Red cell perturbations by amyloid beta-protein. Biochim. Biophys. Acta1622(1), 20–28 (2003).
  • Murali J , KoteeswariD, RifkindJM, JayakumarR. Amyloid insulin interaction with erythrocytes. Biochem. Cell Biol.81(1), 51–59 (2003).
  • Boyle MJ , LangerC, ChanJAet al. Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infect. Immun.82(3), 924–936 (2014).
  • Fernàndez-Busquets X , de GrootNS, FernandezD, VenturaS. Recent structural and computational insights into conformational diseases. Curr. Med. Chem.15(13), 1336–1349 (2008).
  • Low A , ChandrashekaranIR, AddaCGet al. Merozoite surface protein 2 of Plasmodium falciparum: expression, structure, dynamics, and fibril formation of the conserved N-terminal domain. Biopolymers87(1), 12–22 (2007).
  • Lambert MP , BarlowAK, ChromyBAet al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA95(11), 6448–6453 (1998).
  • Delahaye N , ColtelN, PuthierDet al. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice. BMC Genomics8(1), 452 (2007).
  • Medana IM , DayNP, HienTTet al. Axonal injury in cerebral malaria. Am. J. Pathol.160(2), 655–666 (2002).
  • Deutsch SI , RosseRB, DeutschLH. Faulty regulation of tau phosphorylation by the reelin signal transduction pathway is a potential mechanism of pathogenesis and therapeutic target in Alzheimer's disease. Eur. Neuropsychopharmacol.16(8), 547–551 (2006).
  • Miller LH , BaruchDI, MarshK, DoumboOK. The pathogenic basis of malaria. Nature415(6872), 673–679 (2002).
  • Gitau EN , NewtonCRJC. Blood–brain barrier in falciparum malaria. Trop. Med. Int. Health10(3), 285–292 (2005).
  • Medana IM , TurnerGDH. Human cerebral malaria and the blood–brain barrier. Int. J. Parasitol.36(5), 555–568 (2006).
  • Idro R , JenkinsNE, NewtonCR. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol.4(12), 827–840 (2005).
  • Valle-Delgado JJ , Alfonso-PrietoM, de GrootNSet al. Modulation of Aβ42 fibrillogenesis by glycosaminoglycan structure. FASEB J.24(11), 4250–4261 (2010).
  • Treeratanapiboon L , PsathakiK, WegenerJ, LooareesuwanS, GallaHJ, UdomsangpetchR. In vitro study of malaria parasite induced disruption of blood–brain barrier. Biochem. Biophys. Res. Commun.335(3), 810–818 (2005).
  • Urbán P , EstelrichJ, CortésA, Fernàndez-BusquetsX. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J. Control. Release151(2), 202–211 (2011).
  • Bachmeier C , MullanM, ParisD. Characterization and use of human brain microvascular endothelial cells to examine β-amyloid exchange in the blood–brain barrier. Cytotechnology62(6), 519–529 (2010).
  • Viebig NK , WulbrandU, FörsterR, AndrewsKT, LanzerM, KnollePA. Direct activation of human endothelial cells by Plasmodium falciparum-infected erythrocytes. Infect. Immun.73(6), 3271–3277 (2005).
  • Rüffer C , StreyA, JanningA, KimKS, GerkeV. Cell–cell junctions of dermal microvascular endothelial cells contain tight and adherens junction proteins in spatial proximity. Biochemistry43(18), 5360–5369 (2004).
  • Chien P , WeissmanJS, DePaceAH. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem.73(1), 617–656 (2004).
  • Newby GA , LindquistS. Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol.23(6), 251–259 (2013).
  • Espinosa Angarica V , VenturaS, SanchoJ. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics14(1), 316 (2013).
  • Muralidharan V , GoldbergDE. Asparagine repeats in Plasmodium falciparum proteins: good for nothing?PLoS Pathog.9(8), e1003488 (2013).
  • Muralidharan V , OksmanA, PalP, LindquistS, GoldbergDE. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat. Commun.3, 1310 (2012).