853
Views
4
CrossRef citations to date
0
Altmetric
Special Report

No Supplementation for Transfusion Medicine and Cardiovascular Applications

, &
Article: FSO51 | Published online: 24 Jul 2015

References

  • Department of Health and Human Services . The 2011 National Blood Collection and Utilization Report. Washington, DC, DHHS (2013). www.aabb.org/programs/biovigilance/nbcus/Pages/default.aspx.
  • Salazar Vazquez BY , MartiniJ, Chavez NegreteA, CabralesP, TsaiAG, IntagliettaM. Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings. Biorheology46(3), 167–179 (2009).
  • Bevers LM , BraamB, PostJAet al. Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension47(1), 87–94 (2006).
  • Allen BW , DemchenkoIT, PiantadosiCA. Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J. Appl. Physiol.106(2), 662–667 (2009).
  • Cabrales P , HanG, NacharajuP, FriedmanAJ, FriedmanJM. Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide. Am. J. Physiol. Heart Circ. Physiol.300(1), H49–H56 (2011).
  • Nachuraju P , FriedmanAJ, FriedmanJM, CabralesP. Exogenous nitric oxide prevents cardiovascular collapse during hemorrhagic shock. Resuscitation82(5), 607–613 (2011).
  • Cabrales P , TsaiAG, IntagliettaM. Exogenous nitric oxide induces protection during hemorrhagic shock. Resuscitation80(6), 707–712 (2009).
  • Tsai AG , AceroC, NancePRet al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am. J. Physiol. Heart Circ. Physiol.288(4), H1730–H1739 (2005).
  • Yalcin O , WangQ, JohnsonPC, PalmerAF, CabralesP. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution. Biorheology48(5), 277–291 (2011).
  • Yalcin O , OrtizD, TsaiAG, JohnsonPC, CabralesP. Microhemodynamic aberrations created by transfusion of stored blood. Transfusion54(4), 1015–1027 (2013).
  • Roback JD . Vascular effects of the red blood cell storage lesion. Hematol. Am. Soc. Hematol. Educ. Program.2011, 475–479 (2011).
  • Donadee C , RaatNJ, KaniasTet al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation124(4), 465–476 (2011).
  • Gladwin MT , CrawfordJH, PatelRP. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic. Biol. Med.36(6), 707–717 (2004).
  • Cabrales P , FriedmanJM. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species. Antioxid. Redox Signal.18(17), 2284–2297 (2013).
  • Reynolds JD , BennettKM, CinaAJet al. S-nitrosylation therapy to improve oxygen delivery of banked blood. Proc. Natl. Acad Sci USA110(28), 11529–11534 (2013).
  • Tsai AG , CabralesP, ManjulaBN, AcharyaSA, WinslowRM, IntagliettaM. Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood108(10), 3603–3610 (2006).
  • Haidara MA , YassinHZ, RatebM, AmmarH, ZorkaniMA. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr. Vasc. Pharmacol.4(3), 215–227 (2006).
  • Zapol WM . Inhaled nitric oxide. Acta Anaesthesiol. Scand. Suppl.109, 81–83 (1996).
  • Friedman AJ , HanG, NavatiMSet al. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide19(1), 12–20 (2008).
  • Friedman A , FriedmanJ. New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opin. Drug Deliv.6(10), 1113–1122 (2009).
  • Keefer LK , NimsRW, DaviesKM, WinkDA. ‘NONOates’ (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol.268, 281–293 (1996).
  • Diodati J , QuyyumiA, HussainN, KeeferL. Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelet effect. Thromb. Haemost.70(4), 654–658 (1993).
  • Maragos CM , MorleyD, WinkDAet al. Complexes of. NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J. Med. Chem.34(11), 3242–3247 (1991).
  • Pearce CG , NajjarSF, KapadiaMRet al. Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radic. Biol. Med.44(1), 73–81 (2008).
  • Liu J , QuW, SaavedraJE, WaalkesMP. The nitric oxide donor, O2-vinyl 1-(pyrrolidin-1-yl) diazen-1-ium-1, 2-diolate (V-PYRRO/NO), protects against cadmium-induced hepatotoxicity in mice. J. Pharmacol. Exp. Ther.310(1), 18–24 (2004).
  • Li C , LiuJ, SaavedraJE, KeeferLK, WaalkesMP. The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced nephrotoxicity in mice. Toxicology189(3), 173–180 (2003).
  • Keefer LK . Progress toward clinical application of the nitric oxide-releasing diazeniumdiolates 1. Annu. Rev. Pharmacol. Toxicol.43(1), 585–607 (2003).
  • Shin JH , SchoenfischMH. Inorganic/organic hybrid silica nanoparticles as a nitric oxide delivery scaffold. Chem. Mater.20(1), 239–249 (2007).
  • Cabrales P , HanG, RocheC, NacharajuP, FriedmanAJ, FriedmanJM. Sustained release nitric oxide from long-lived circulating nanoparticles. Free Radic. Biol. Med.49(4), 530–538 (2010).
  • Nachuraju P , FriedmanAJ, FriedmanJM, CabralesP. Exogenous nitric oxide prevents cardiovascular collapse during hemorrhagic shock. Resuscitation82(5), 607–613 (2011).
  • Cabrales P , HanG, RocheC, NacharajuP, FriedmanAJ, FriedmanJM. Sustained release nitric oxide from long-lived circulating nanoparticles. Free Radic. Biol. Med.49(4), 530–538 (2010).
  • Chatpun S , CabralesP. Exogenous intravascular nitric oxide enhances ventricular function after hemodilution with plasma expander. Life Sci.90(1), 39–46 (2012).