2,333
Views
9
CrossRef citations to date
0
Altmetric
Review

Opportunities in Low-Level Radiocarbon Microtracing: Applications and New Technology

, , , , , & show all
Article: FSO74 | Received 09 Jun 2015, Accepted 20 Aug 2015, Published online: 23 Dec 2015

References

  • US FDA . Innovation/Stagnation: Challenge and Opportunity on the Critical Path to New Medical Product.US Department of Health and Human Services, Food and Drug Administration, MD, USA (2004).
  • Kamen M . Tracers. Sci. Am.180, 40–40 (1949).
  • Vogel JS , LohstrohP, KeckB, DuekerSR. Quantitative drug metabolism with accelerator mass spectrometry. In: Mass Spectrometry in Drug Metabolism and Disposition.LeeMS, ZhuM ( Eds). John Wiley & Sons, Inc, NJ, USA, 525–566 (2011).
  • Vogel JS , TurteltaubKW, FinkelR, NelsonDE. Accelerator mass spectrometry. Anal. Chem.67(11), A353–A359 (1995).
  • Lappin G , GarnerRC. Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat. Rev. Drug Discov.2(3), 233–240 (2003).
  • Synal H-A , StockerM, SuterM. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B259(1), 7–13 (2007).
  • Shapiro SD , EndicottSK, ProvinceMA, PierceJA, CampbellEJ. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest.87(5), 1828–1834. (1991).
  • Felton JS , TurteltaubKW, GledhillBL, VogelJS, BuonaratiMH, DavisJC. DNA dosimetry following carcinogen exposure using accelerator mass spectrometry and 32P-postlabeling. Prog. Clin. Biol. Res.372, 243–253 (1991).
  • Turteltaub KW , FeltonJS, GledhillBLet al. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA. Proc. Natl Acad. Sci. USA87(14), 5288–5292 (1990).
  • Gilman SD , GeeSJ, HammockBDet al. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Anal. Chem.70(16), 3463–3469 (1998).
  • Vogel JS , KeatingGA, 2nd, BuchholzBA. Protein binding of isofluorophate in vivo after coexposure to multiple chemicals. Environ. Health Perspect.110(Suppl. 6), 1031–1036 (2002).
  • Sarachine Falso MJ , BuchholzBA. Bomb pulse biology. Nucl. Instrum. Methods Phys. Res. B294, 666–670 (2013).
  • Buchholz BA , SpaldingKL. Year of birth determination using radiocarbon dating of dental enamel. Surf. Interface Anal.42(5), 398–401 (2010).
  • Spalding KL , BhardwajRD, BuchholzBA, DruidH, FrisenJ. Retrospective birth dating of cells in humans. Cell122(1), 133–143 (2005).
  • Hickenbottom SJ , LemkeSL, DuekerSRet al. Dual isotope test for assessing beta-carotene cleavage to vitamin A in humans. Eur. J. Nutr.41(4), 141–147 (2002).
  • Dueker SR , LinY, BuchholzBAet al. Long-term kinetic study of beta-carotene, using accelerator mass spectrometry in an adult volunteer. J. Lipid Res.41(11), 1790–1800 (2000).
  • Clifford AJ , ArjomandA, DuekerSR, SchneiderPD, BuchholzBA, VogelJS. The dynamics of folic acid metabolism in an adult given a small tracer dose of 14C-folic acid. Adv. Exp. Med. Biol.445, 239–251 (1998).
  • Vuong LT , BloodAB, VogelJS, AndersonME, GoldsteinB. Applications of accelerator MS in pediatric drug evaluation. Bioanalysis4(15), 1871–1882 (2012).
  • Gordi T , BaillieR, Vuong LeTet al. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. J. Clin. Pharmacol.54(9), 1031–1037 (2014).
  • Nedderman ANR , SavageME. Quantitation of drug metabolites by radioactivity detection including accelerator mass spectrometry (AMS). In: Handbook of Metabolic Pathways of Xenobiotics.John Wiley & Sons, Ltd, NJ, USA (2014).
  • Lappin G , GarnerRC. The use of accelerator mass spectrometry to obtain early human ADME/PK data. Expert Opin. Drug Metabol. Toxicol.1(1), 23–31 (2005).
  • Lappin G , StevensL. Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics. Expert Opin. Drug Metabol. Toxicol.4(8), 1021–1033 (2008).
  • Garner RC . Accelerator mass spectrometry in pharmaceutical research and development – a new ultrasensitive analytical method for isotope measurement. Curr. Drug Metabol.1(2), 205–213 (2000).
  • Young GC , SeymourM. Application of 14C-accelerator MS in pharmaceutical development. Bioanalysis7(5), 513–517 (2015).
  • ICH. Guideline. Harmonised Tripartite. Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals (2009). www.ich.org/products/guidelines/safety/safety-single/article/guidance-on-nonclinical-safety-studies-for-the-conduct-of-human-clinical-trials-and-marketing-author.html
  • Xu XS , JiangH, ChristopherLJ, ShenJX, ZengJ, ArnoldME. Sensitivity-based analytical approaches to support human absolute bioavailability studies. Bioanalysis6(4), 497–504 (2014).
  • Bronk CR , HedgesREM. A gas ion source for radiocarbon dating. Nucl. Instrum. Methods Phys. Res. B29(1–2), 45–49 (1987).
  • Kutschera W . Progress in isotope analysis at ultra-trace level by AMS. Int. J. Mass Spectrom.242, 145–160 (2005).
  • Arjomand A . Accelerator mass spectrometry-enabled studies: current status and future prospects. Bioanalysis2(3), 519–541 (2010).
  • Stewart BJ , BenchG, BuchholzBAet al. Accelerator mass spectrometry in pharmaceutical development. In: Mass Spectrometry Handbook, MSLee ( Ed.), John Wiley & Sons, Inc., NJ, USA, 259–269 (2012).
  • Ings RM . Microdosing: a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge. Bioanalysis1(7), 1293–1305 (2009).
  • Rowland M . Commentary on ACCP position statement on the use of microdosing in the drug development process. J. Clin. Pharmacol.47(12), 1595–1596; author reply 1597–1598 (2007).
  • Lappin G , GarnerRC. The utility of microdosing over the past 5 years. Expert Opin. Drug Metabol. Toxicol.4(12), 1499–1506 (2008).
  • Lappin G , ShishikuraY, JochemsenRet al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur. J. Pharm. Sci.43(3), 141–150 (2011).
  • Rowland M . Microdosing: a critical assessment of human data. J. Pharm. Sci.101(11), 4067–4074 (2012).
  • Salehpour M , EkblomJ, SabetskyV, HakanssonK, PossnertG. Accelerator mass spectrometry offers new opportunities for microdosing of peptide and protein pharmaceuticals. Rapid Commun. Mass Spectrom.24(10), 1481–1489 (2010).
  • Arnold ME , LacretaF. When opportunity met aspirational goals: accelerator MS, microdosing and absolute bioavailability studies. Bioanalysis4(15), 1831–1834 (2012).
  • Seymour MA . Accelerator MS: its role as a frontline bioanalytical technique. Bioanalysis3(24), 2817–2823 (2011).
  • Gao L , LiJ, KasserraCet al. Precision and accuracy in the quantitative analysis of biological samples by accelerator mass spectrometry: application in microdose absolute bioavailability studies. Anal. Chem.83(14), 5607–5616 (2011).
  • Young GC , SeymourM, DuekerSR, TimmermanP, ArjomandA, NozawaK. New frontiers-accelerator mass spectrometry (AMS): recommendation for best practices and harmonization from Global Bioanalysis Consortium Harmonization Team. AAPS J.16(2), 357–359 (2014).
  • Higton D , YoungG, TimmermanP, AbbottR, KnutssonM, SvenssonLD. European Bioanalysis Forum recommendation: scientific validation of quantification by accelerator mass spectrometry. Bioanalysis4(22), 2669–2679 (2012).
  • Roffey SJ , ObachRS, GedgeJI, SmithDA. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metabol. Rev.39(1), 17–43 (2007).
  • Graham RA , HopCE, BorinMTet al. Single and multiple dose intravenous and oral pharmacokinetics of the hedgehog pathway inhibitor vismodegib in healthy female subjects. Br. J. Clin. Pharmacol.74(5), 788–796 (2012).
  • Graham RA , LumBL, MorrisonGet al. A single dose mass balance study of the Hedgehog pathway inhibitor vismodegib (GDC-0449) in humans using accelerator mass spectrometry. Drug Metabol. Dispos.39(8), 1460–1467 (2011).
  • Lappin G , SeymourM, GrossG, JorgensenM, KallM, KvaernoL. Meeting the MIST regulations: human metabolism in Phase I using AMS and a tiered bioanalytical approach. Bioanalysis4(4), 407–416 (2012).
  • Administration US FDA . Code of Federal Regulations. 21 CFR Part 361.1 Radioactive drugs for certain research uses. (2007). www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=361.1
  • Beaumont C , YoungGC, CavalierT, YoungMA. Human absorption, distribution, metabolism and excretion properties of drug molecules: a plethora of approaches. Br. J. Clin. Pharmacol.78(6), 1185–1200 (2014).
  • Eudralex . Medicinal products for human and veterinary use: good manufacturing practice. ANNEX 1 manufacture of sterile medicinal products. Volume 4 (2003). http://ec.europa.eu/health/documents/eudralex/vol-4/index_en.htm
  • US FDA . Guidance for Industry CGMP for Phase 1 Investigational Drugs. Rockville, MD (2008). www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070273.pdf
  • United States Nuclear Regulatory Commision . 10CFR20.1003. Definitions (1998). www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1003.html
  • Iyer GR , PatelY, TeuscherNS. A novel study using accelerated mass spectrometry to evaluate the pharmacokinetics of total 14C AL-8309 (Tandospirone) following topical ocular administration in healthy male subjects. Clin. Pharmacol. Drug Dev.1(1), 4–13 (2012).
  • Svensson LD . Could traditional mass-balance studies in the ‘twilight zone’ be improved by means of accelerator MS measurements?Bioanalysis4(15), 1835–1837 (2012).
  • US FDA . Guidance for industry: safety testing of drug metabolites. Rockville, MD (2008). www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073385.pdf
  • Lappin G , SeymourM. Addressing metabolite safety during first-in-man studies using 14C-labeled drug and accelerator mass spectrometry. Bioanalysis2(7), 1315–1324 (2010).
  • Morselli PL , PrincipiN, TognoniGet al. Diazepam elimination in premature and full term infants, and children. J. Perinat. Med.1(2), 133–141 (1973).
  • De Wildt SN , TibboelD, LeederJS. Drug metabolism for the paediatrician. Arch. Dis. Childhood99(12), 1137–1142 (2014).
  • Shirkey HE . Editorial commentary: therapeutic orphans. J. Pediatr.72, 119–120 (1968).
  • Allegaert K , Van Den AnkerJN. Clinical pharmacology in neonates: small size, huge variability. Neonatology105(4), 344–349 (2014).
  • Allegaert K , Van De VeldeM, Van Den AnkerJ. Neonatal clinical pharmacology. Paediatr. Anaesth.24(1), 30–38 (2014).
  • Mooij MG , Van DuijnE, KnibbeCAet al. Pediatric microdose study of 14C paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept. Clin. Pharmacokinet.53(11), 1045–1051 (2014).
  • Garner RC , ParkBK, FrenchNSet al. Observational infant exploratory [C]paracetamol pharmacokinetic microdose/therapeutic Dose study with accelerator mass spectrometry bioanalysis. Br. J. Clin. Pharmacol.80(1), 157–167 (2015).
  • Dueker SR , LohstrohPN, GiacomoJA, LeTV, KeckBD, VogelJS. Early human ADME using microdoses and microtracers: bioanalytical considerations. Bioanalysis2(3), 441–454 (2010).
  • Keck BD , OgnibeneT, VogelJS. Analytical validation of accelerator mass spectrometry for pharmaceutical development. Bioanalysis2(3), 469–485 (2010).
  • Lappin G , GarnerRC, MeyersT, PowellJ, VarleyP. Novel use of accelerator mass spectrometry for the quantification of low levels of systemic therapeutic recombinant protein. J. Pharm. Biomed. Anal.41(4), 1299–1302 (2006).
  • Wang JWL , FungJ, GongJet al. Use of accelerated mass spectrometry (AMS) to characterize placental transfer of therapeutic Proteins. Presented at: 62nd American Society of Mass Spectrometry Conference on Mass Spectrometry and Allied Topics 2014.Maryland, MD, USA, 15–19June 2014.
  • Maxwell BD , CaoK, BonacorsiSet al. The synthesis of a carbon-14 labeled pegylated Adnectin for placental transfer studies in guinea pigs. J. Labelled Comp. Radiopharm.56(9–10), 492–494 (2013).
  • Vlaming M , Van DuijnE, DillinghMRet al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages. Clin. Pharmacol. Ther.98(2), 196–204 (2015).
  • Synal HA . Developments in accelerator mass spectrometry. Int. J. Mass Spectrom.349–350, 192–201 (2013).
  • Suter M , JacobSWA, SynalHA. Tandem AMS at sub-MeV energies – status and prospects. Nucl. Instrum. Methods Phys. Res. B.172(1), 144–151 (2000).
  • Young GC , CorlessS, FelgateCC, ColthupPV. Comparison of a 250 kV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer – fitness for purpose in bioanalysis. Rapid Commun. Mass Spectrom.22(24), 4035–4042 (2008).
  • Vogel JS . Rapid production of graphite without contamination for biomedical AMS. Radiocarbon34, 344–350 (1992).
  • Ognibene TJ , BenchG, VogelJS, PeasleeGF, MurovS. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry. Anal. Chem.75(9), 2192–2196 (2003).
  • Ognibene TJ , SalazarGA. Installation of hybrid ion source on the 1-MV LLNL BioAMS spectrometer. Nucl. Instrum. Methods Phys. Res. B294, 311–314 (2013).
  • Van Duijn E , SandmanH, GrossouwD, MockingJA, CoulierL, VaesWH. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range. Anal. Chem.86(15), 7635–7641 (2014).
  • Prakash C , ShafferCL, TremaineLMet al. Application of liquid chromatography-accelerator mass spectrometry (LC-AMS) to evaluate the metabolic profiles of a drug candidate in human urine and plasma. Drug Metabol. Lett.1(3), 226–231 (2007).
  • Liberman RG , TannenbaumSR, HugheyBJet al. An interface for direct analysis of 14C in nonvolatile samples by accelerator mass spectrometry. Anal. Chem.76(2), 328–334 (2004).
  • Flarakos J , LibermanRG, TannenbaumSR, SkipperPL. Integration of continuous-flow accelerator mass spectrometry with chromatography and mass-selective detection. Anal. Chem.80(13), 5079–5085 (2008).
  • Thomas AT , StewartBJ, OgnibeneTJ, TurteltaubKW, BenchG. Directly coupled high-performance liquid chromatography-accelerator mass spectrometry measurement of chemically modified protein and peptides. Anal. Chem.85(7), 3644–3650 (2013).
  • Thomas AT , OgnibeneT, DaleyP, TurteltaubK, RadouskyH, BenchG. Ultrahigh efficiency moving wire combustion interface for online coupling of high-performance liquid chromatography (HPLC). Anal. Chem.83(24), 9413–9417 (2011).
  • Persson A , EilersG, RyderforsL, MukhtarE, PossnertGR, SalehpourM. Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements. Anal. Chem.85(14), 6790–6798 (2013).
  • Galli I , BartaliniS, BorriSet al. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett.107(27), 270802 (2011).
  • Galli I , BartaliniS, CancioPet al. Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon55(2–3), 213–223 (2013).