1,583
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Syndecan-4 as a Biomarker to Predict Clinical Outcome for Glioblastoma Multiforme Treated with WT1 Peptide Vaccine

, , , , , , , , , , , , , , & show all
Article: FSO96 | Accepted 04 Jan 2016, Published online: 03 Oct 2016

References

  • Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3rd. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257(5070), 674–678 (1992).
  • Hewitt SM, Hamada S, Mcdonnell TJ, Rauscher FJ 3rd, Saunders GF. Regulation of the proto-oncogenes BCL-2 and c-MYC by the Wilms’ tumor suppressor gene WT1. Cancer Res. 55(22), 5386–5389 (1995).
  • Kim J, Prawitt D, Bardeesy N et al. The Wilms’ tumor suppressor gene (WT1) product regulates Dax-1 gene expression during gonadal differentiation. Mol. Cell. Biol. 19(3), 2289–2299 (1999).
  • Sugiyama H. Wilms’ tumor gene WT1: its oncogenic function and clinical application. Int. J. Hematol. 73(2), 177–187 (2001).
  • Nakatsuka S, Oji Y, Horiuchi T et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod. Pathol. 19(6), 804–814 (2006).
  • Cheever MA, Allison JP, Ferris AS et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15(17), 5323–5337 (2009).
  • Coosemans A, Vanderstraeten A, Tuyaerts S et al. Wilms’ tumor gene 1 (WT1)-loaded dendritic cell immunotherapy in patients with uterine tumors: a Phase I/II clinical trial. Anticancer Res. 33(12), 5495–5500 (2013).
  • Van Driessche A, Van de Velde AL, Nijs G et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a Phase I dose-escalation clinical trial. Cytotherapy 11(5), 653–668 (2009).
  • Coosemans A, Vanderstraeten A, Tuyaerts S et al. Immunological response after WT1 mRNA-loaded dendritic cell immunotherapy in ovarian carcinoma and carcinosarcoma. Anticancer Res. 33(9), 3855–3859 (2013).
  • Izumoto S, Tsuboi A, Oka Y et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J. Neurosurg. 108(5), 963–971 (2008).
  • Hashimoto N, Tsuboi A, Chiba Y et al. Immunotherapy targeting the Wilms’ tumor 1 gene product for patients with malignant brain tumors. Brain Nerve 61(7), 805–814 (2009).
  • Chiba Y, Hashimoto N, Tsuboi A et al. Effects of concomitant temozolomide and radiation therapies on WT1-specific T-cells in malignant glioma. Jpn. J. Clin. Oncol. 40(5), 395–403 (2010).
  • Chiba Y, Hashimoto N, Tsuboi A et al. Prognostic value of WT1 protein expression level and MIB-1 staining index as predictor of response to WT1 immunotherapy in glioblastoma patients. Brain Tumor Pathol. 27(1), 29–34 (2010).
  • Hashimoto N, Tsuboi A, Kagawa N et al. Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: safety and impact on immunological response. Cancer Immunol. Immunother. 64(6), 707–716 (2015).
  • Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA 101(38), 13885–13890 (2004).
  • Van Tendeloo VF, Van de Velde A, Van Driessche A et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA 107(31), 13824–13829 (2010).
  • Hashii Y, Sato-Miyashita E, Matsumura R et al. WT1 peptide vaccination following allogeneic stem cell transplantation in pediatric leukemic patients with high risk for relapse: successful maintenance of durable remission. Leukemia 26(3), 530–532 (2012).
  • Tsuboi A, Oka Y, Kyo T et al. Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 26(6), 1410–1413 (2012).
  • Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H. WT1 peptide vaccine for the treatment of cancer. Curr. Opin. Immunol. 20(2), 211–220 (2008).
  • Narita M, Masuko M, Kurasaki T et al. WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int. J. Med. Sci. 7(2), 72–81 (2010).
  • Oji Y, Oka Y, Nishida S et al. WT1 peptide vaccine induces reduction in minimal residual disease in an Imatinib-treated CML patient. Eur. J. Haematol. 85(4), 358–360 (2010).
  • Kawakami M, Oka Y, Tsuboi A et al. Clinical and immunologic responses to very low-dose vaccination with WT1 peptide (5 microg/body) in a patient with chronic myelomonocytic leukemia. Int. J. Hematol. 85(5), 426–429 (2007).
  • Ohno S, Kyo S, Myojo S et al. Wilms’ tumor 1 (WT1) peptide immunotherapy for gynecological malignancy. Anticancer Res. 29(11), 4779–4784 (2009).
  • Oka Y, Tsuboi A, Murakami M et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int. J. Hematol. 78(1), 56–61 (2003).
  • Tsuboi A, Oka Y, Nakajima H et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int. J. Hematol. 86(5), 414–417 (2007).
  • Nishioka M, Tanemura A, Nishida S et al. Vaccination with WT-1 (Wilms’ tumor gene-1) peptide and BCG-CWS in melanoma. Eur. J. Dermatol. 22(2), 258–259 (2012).
  • Ohta H, Hashii Y, Yoneda A et al. WT1 (Wilms tumor 1) peptide immunotherapy for childhood rhabdomyosarcoma: a case report. Pediatr. Hematol. Oncol. 26(1), 74–83 (2009).
  • Tsuboi A, Oka Y, Osaki T et al. WT1 peptide-based immunotherapy for patients with lung cancer: report of two cases. Microbiol. Immunol. 48(3), 175–184 (2004).
  • Takahara A, Koido S, Ito M et al. Gemcitabine enhances Wilms’ tumor gene WT1 expression and sensitizes human pancreatic cancer cells with WT1-specific T-cell-mediated antitumor immune response. Cancer Immunol. Immunother. 60(9), 1289–1297 (2011).
  • Nishida S, Koido S, Takeda Y et al. Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer. J. Immunother. 37(2), 105–114 (2014).
  • Dohi S, Ohno S, Ohno Y et al. WT1 peptide vaccine stabilized intractable ovarian cancer patient for one year: a case report. Anticancer Res. 31(7), 2441–2445 (2011).
  • Miyatake T, Ueda Y, Morimoto A et al. WT1 peptide immunotherapy for gynecologic malignancies resistant to conventional therapies: a Phase II trial. J. Cancer Res. Clin. Oncol. 139(3), 457–463 (2013).
  • Ohno S, Dohi S, Ohno Y et al. Immunohistochemical detection of WT1 protein in endometrial cancer. Anticancer Res. 29(5), 1691–1695 (2009).
  • Sasabe E, Hamada F, Iiyama T, Udaka K, Sugiyama H, Yamamoto T. Wilm’s tumor gene WT1 peptide immunotherapy for pulmonary metastasis from adenoid cystic carcinoma of the salivary gland. Oral Oncol. 47(1), 77–78 (2011).
  • Shirakata T, Oka Y, Nishida S et al. WT1 peptide therapy for a patient with chemotherapy-resistant salivary gland cancer. Anticancer Res. 32(3), 1081–1085 (2012).
  • Ostrom QT, Bauchet L, Davis FG et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 16(7), 896–913 (2014).
  • Ogi C, Aruga A. New concepts of biomarkers and clinical outcomes for therapeutic cancer vaccines in clinical trials. Immunotherapy 6(10), 1025–1036 (2014).
  • Shippy R, Fulmer-Smentek S, Jensen RV et al. Using RNA sample titrations to assess microarray platform performance and normalization techniques. Nat. Biotechnol. 24(9), 1123–1131 (2006).
  • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7(1), 55–65 (2006).
  • Shi L, Reid LH, Jones WD et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24(9), 1151–1161 (2006).
  • NCBI nucleotide database. http://www.ncbi.nlm.nih.gov/nuccore.
  • The R Project for Statistical Computing. www.r-project.org.
  • Chung JS, Dougherty I, Cruz PD Jr, Ariizumi K. Syndecan-4 mediates the coinhibitory function of DC-HIL on T cell activation. J. Immunol. 179(9), 5778–5784 (2007).
  • Chung JS, Sato K, Dougherty Ii, Cruz PD Jr, Ariizumi K. DC-HIL is a negative regulator of T lymphocyte activation. Blood 109(10), 4320–4327 (2007).
  • Yu X, Harden K, Gonzalez LC et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10(1), 48–57 (2009).
  • Teixe T, Nieto-Blanco P, Vilella R, Engel P, Reina M, Espel E. Syndecan-2 and -4 expressed on activated primary human CD4+ lymphocytes can regulate T cell activation. Mol. Immunol. 45(10), 2905–2919 (2008).
  • Okuyama E, Suzuki A, Murata M et al. Molecular mechanisms of syndecan-4 upregulation by TNF-alpha in the endothelium-like EAhy926 cells. J. Biochem. 154(1), 41–50 (2013).
  • Chung JS, Tomihari M, Tamura K, Kojima T, Cruz PD Jr, Ariizumi K. The DC-HIL ligand syndecan-4 is a negative regulator of T-cell allo-reactivity responsible for graft-versus-host disease. Immunology 138(2), 173–182 (2013).
  • Chung JS, Yudate T, Tomihari M, Akiyoshi H, Cruz PD Jr, Ariizumi K. Binding of DC-HIL to dermatophytic fungi induces tyrosine phosphorylation and potentiates antigen presenting cell function. J. Immunol. 183(8), 5190–5198 (2009).
  • Chung JS, Tamura K, Akiyoshi H, Cruz PD Jr, Ariizumi K. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells. J. Immunol. 192(6), 2576–2584 (2014).
  • Ishiguro K, Kadomatsu K, Kojima T et al. Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J. Biol. Chem. 276(50), 47483–47488 (2001).
  • Tanino Y, Chang MY, Wang X et al. Syndecan-4 regulates early neutrophil migration and pulmonary inflammation in response to lipopolysaccharide. Am. J. Respir. Cell Mol. Biol. 47(2), 196–202 (2012).
  • Smith MF Jr, Novotny J, Carl VS, Comeau LD. Helicobacter pylori and toll-like receptor agonists induce syndecan-4 expression in an NF-kappaB-dependent manner. Glycobiology 16(3), 221–229 (2006).
  • Boyanovsky BB, Shridas P, Simons M, Van der Westhuyzen DR, Webb NR. Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL. J. Lipid Res. 50(4), 641–650 (2009).
  • Li J, Brown LF, Laham RJ, Volk R, Simons M. Macrophage-dependent regulation of syndecan gene expression. Circ. Res. 81(5), 785–796 (1997).
  • Komatsu N, Matsueda S, Tashiro K et al. Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. Cancer 118(12), 3208–3221 (2012).