2,949
Views
14
CrossRef citations to date
0
Altmetric
Review

Noninvasive Metabolic Profiling for Painless Diagnosis of Human Diseases and Disorders

Article: FSO106 | Accepted 29 Jan 2016, Published online: 10 Jun 2016

References

  • Gates SC , SweeleyCC. Quantitative metabolic profiling based on gas chromatography. Clin. Chem.24(10), 1663–1673 (1978).
  • Holmes E , WilsonID, NicholsonJK. Metabolic phenotyping in health and disease. Cell134(5), 714–717 (2008).
  • Kosmides AK , KamisogluK, CalvanoSE, CorbettSA, AndroulakisIP. Metabolomic fingerprinting: challenges and opportunities. Crit. Rev. Biomed. Eng.41(3), 205–221 (2013).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Harrigan GG , GoodacreR. Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, Boston, MA, USA (2003).
  • Fiehn O . Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics2(3), 155–168 (2001).
  • Morris M , WatkinsSM. Focused metabolomic profiling in the drug development process: advances from lipid profiling. Curr. Opin. Chem. Biol.9(4), 407–412 (2005).
  • Urpi-Sarda M , MonagasM, KhanNet al. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A1216(43), 7258–7267 (2009).
  • Dunn WB , BaileyNJ, JohnsonHE. Measuring the metabolome: current analytical technologies. Analyst130(5), 606–625 (2005).
  • Lindon JC , HolmesE, NicholsonJK. Metabonomics in pharmaceutical R&D. FEBS J.274(5), 1140–1151 (2007).
  • Goodacre R , BroadhurstD, SmildeAKet al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics3(3), 231–241 (2007).
  • Scalbert A , BrennanL, FiehnOet al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics5(4), 435–458 (2009).
  • Monteiro MS , CarvalhoM, BastosML, Guedes De PinhoP. Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem.20(2), 257–271 (2013).
  • Emwas AH , LuchinatC, TuranoPet al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics11(4), 872–894 (2015).
  • Emwas AH , RoyR, MckayRTet al. Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis. J. Proteome Res. doi:10.1021/acs.jproteome.5b00885 (2016) ( Epub ahead of print).
  • Klupczynska A , DerezinskiP, KokotZJ. Metabolomics in medical sciences – trends, challenges and perspectives. Acta Pol. Pharm.72(4), 629–641 (2015).
  • Brenner DE , RennertG. Fecal DNA biomarkers for the detection of colorectal neoplasia: attractive, but is it feasible?J. Natl Cancer Inst.97(15), 1107–1109 (2005).
  • Medina S , Dominguez-PerlesR, GilJI, FerreresF, Gil-IzquierdoA. Metabolomics and the diagnosis of human diseases – a guide to the markers and pathophysiological pathways affected. Curr. Med. Chem.21(7), 823–848 (2014).
  • Chan EC , MalM, PasikantiKK. Metabonomics. In: Handbook of Separation Science: Gas Chromatography. PooleCF ( Ed.). Elsevier, PA, USA, 545–562 (2012).
  • Cao DL , YeDW, ZhangHL, ZhuY, WangYX, YaoXD. A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate71(7), 700–710 (2011).
  • Yang J , XuG, ZhengYet al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci.813(1–2), 59–65 (2004).
  • Frickenschmidt A , FrohlichH, BullingerDet al. Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers13(4), 435–449 (2008).
  • Fan X , BaiJ, ShenP. Diagnosis of breast cancer using HPLC metabonomics fingerprints coupled with computational methods. Conf. Proc. IEEE Eng. Med. Biol. Soc.6, 6081–6084 (2005).
  • Wang WZ , ZhaoXJ, LiX, ChenJ, LiFL, XuGW. [Lung cancer diagnosis based on urinary modified nucleoside metabolic profiling]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.29(6), 738–741 (2007).
  • Duarte IF , RochaCM, GilAM. Metabolic profiling of biofluids: potential in lung cancer screening and diagnosis. Expert Rev. Mol. Diag.13(7), 737–748 (2013).
  • Silva CL , PassosM, CamaraJS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers – a powerful strategy for breast cancer diagnosis. Talanta89, 360–368 (2012).
  • Pasikanti KK , EsuvaranathanK, HoPCet al. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J. Proteome Res.9(6), 2988–2995 (2010).
  • Jin X , YunSJ, JeongP, KimIY, KimWJ, ParkS. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget5(6), 1635–1645 (2014).
  • Hong Y , EsuvaranathanK, PasikantiKK, Yong ChanEC. Metabonomic diagnosis of bladder cancer: what are the advantages and considerations?Bioanalysis7(21), 2727–2729 (2015).
  • Shen C , SunZ, ChenDet al. Developing urinary metabolomic signatures as early bladder cancer diagnostic markers. Omics19(1), 1–11 (2015).
  • Jung J , JungY, BangEJet al. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Annals Surg. Oncol.21(Suppl. 4), S736–S742 (2014).
  • Furina RR , RyzhkovVL, MitrakovaNNet al. [The method for early diagnosis of the gastric cancer based metabolomics research]. Eksp. Klin. Gastroenterol.10, 14–17 (2014).
  • Vaidyanathan K . Urinary proteomics and metabolomics in the diagnosis of pediatric disorders. Proteomics Clin. Appl.9(5–6), 482–489 (2015).
  • Kouremenos KA , PittJ, MarriottPJ. Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: Application to the diagnosis of organic acidurias and biomarker discovery. J. Chromatogr. A1217(1), 104–111 (2010).
  • Shinka T , InoueY, PengH, Zhen-WeiX, OseM, KuharaT. Urine screening of five-day-old newborns: metabolic profiling of neonatal galactosuria. J. Chromatogr. B Biomed. Sci. Appl.732(2), 469–477 (1999).
  • Janeckova H , KalivodovaA, NajdekrLet al. Untargeted metabolomic analysis of urine samples in the diagnosis of some inherited metabolic disorders. Biomedical Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub.159(4), 582–585 (2014).
  • Wang M , YangX, RenLet al. Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets. J. Proteome Res.13(9), 4131–4142 (2014).
  • Wei H , PasmanW, RubinghCet al. Urine metabolomics combined with the personalized diagnosis guided by Chinese medicine reveals subtypes of pre-diabetes. Mol. Biosyst.8(5), 1482–1491 (2012).
  • Xiong X , ShengX, LiuD, ZengT, PengY, WangY. A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria. Anal. Bioanal. Chem.407(29), 8825–8833 (2015).
  • Kenny LC , BroadhurstDI, DunnWet al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension56(4), 741–749 (2010).
  • Austdal M , TangerasLH, SkrastadRBet al. First trimester urine and serum metabolomics for prediction of preeclampsia and gestational hypertension: a prospective screening study. Int. J. Mol. Sci.16(9), 21520–21538 (2015).
  • Blydt-Hansen TD , SharmaA, GibsonIW, MandalR, WishartDS. Urinary metabolomics for noninvasive detection of borderline and acute T cell-mediated rejection in children after kidney transplantation. Am. J. Transplant.14(10), 2339–2349 (2014).
  • De Preter V . Metabolomics in the clinical diagnosis of inflammatory bowel disease. Digest. Dis.33(Suppl. 1), 2–10 (2015).
  • Godoy MM , LopesEP, SilvaROet al. Hepatitis C virus infection diagnosis using metabonomics. J. Viral Hepatitis17(12), 854–858 (2010).
  • Hou LJ , WangHW, WeiXXet al. Urinary metabonomics for diagnosis of depression in hepatitis B virus-infected patients. Iran. Red Crescent Med. J.17(4), e27359 (2015).
  • Lam CW , LawCY, ToKKet al. NMR-based metabolomic urinalysis: a rapid screening test for urinary tract infection. Clin. Chim. Acta436, 217–223 (2014).
  • Lam CW , LawCY, SzeKH, ToKK. Quantitative metabolomics of urine for rapid etiological diagnosis of urinary tract infection: evaluation of a microbial-mammalian co-metabolite as a diagnostic biomarker. Clin. Chim. Acta438, 24–28 (2015).
  • Pike AW , KleinJL, GotlinRW, FennesseyPV. The role of steroid metabolic profiling as an aid in the diagnosis of familial precocious puberty, a subgroup of true precocious puberty. J. Inherit. Metabol. Dis.9(2), 147–155 (1986).
  • Priori R , ScrivoR, BrandtJet al. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun. Rev.12(10), 1022–1030 (2013).
  • Van QN , KloseJR, LucasDAet al. The use of urine proteomic and metabonomic patterns for the diagnosis of interstitial cystitis and bacterial cystitis. Dis. Markers19(4–5), 169–183 (2003).
  • Alvarez-Sanchez B , Priego-CapoteF, Luque De CastroMD. Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. J. Chromatogr. A1248, 178–181 (2012).
  • Mueller DC , PillerM, NiessnerR, SchererM, SchererG. Untargeted metabolomic profiling in saliva of smokers and nonsmokers by a validated GC-TOF-MS method. J. Proteome Res.13(3), 1602–1613 (2014).
  • Bertram HC , EggersN, EllerN. Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification. Anal. Chem.81(21), 9188–9193 (2009).
  • Ai JY , SmithB, WongDT. Bioinformatics advances in saliva diagnostics. Int. J. Oral Sci.4(2), 85–87 (2012).
  • Zhang A , SunH, WangX. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl. Biochem. Biotechnol.168(6), 1718–1727 (2012).
  • Cuevas-Cordoba B , Santiago-GarciaJ. Saliva: a fluid of study for OMICS. Omics18(2), 87–97 (2014).
  • Mikkonen JJ , SinghSP, HerralaM, LappalainenR, MyllymaaS, KullaaAM. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Periodontal Res. doi:10.1111/jre.12327 (2015) ( Epub ahead of print).
  • Schafer CA , SchaferJJ, YakobM, LimaP, CamargoP, WongDT. Saliva diagnostics: utilizing oral fluids to determine health status. Monogr. Oral Sci.24, 88–98 (2014).
  • Shankar AA , AlexS, RoutrayS. Incorporation of salivary metabolomics in oral cancer diagnostics. Oral Oncol.50(10), e53–e54 (2014).
  • Sugimoto M , WongDT, HirayamaA, SogaT, TomitaM. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics6(1), 78–95 (2010).
  • Barnes VM , KennedyAD, PanagakosFet al. Global metabolomic analysis of human saliva and plasma from healthy and diabetic subjects, with and without periodontal disease. PLoS ONE9(8), e105181 (2014).
  • de Laurentiis G , ParisD, MelckDet al. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J. Proteome Res.12(3), 1502–1511 (2013).
  • Mook-Kanamori DO , SelimMM, TakiddinAHet al. 1,5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. J. Clin. Endocrinol. Metabol.99(3), E479–E483 (2014).
  • Takayama T , KuwabaraT, MaedaTet al. Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients. Anal. Bioanal. Chem.407(3), 1003–1014 (2015).
  • Kageyama G , SaegusaJ, IrinoYet al. Metabolomics analysis of saliva from patients with primary Sjogren’s syndrome. Clin. Exp. Immunol.182(2), 149–153 (2015).
  • Tsuruoka M , HaraJ, HirayamaAet al. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis34(19), 2865–2872 (2013).
  • Yan SK , WeiBJ, LinZY, YangY, ZhouZT, ZhangWD. A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral Oncol.44(5), 477–483 (2008).
  • Wei J , XieG, ZhouZet al. Salivary metabolite signatures of oral cancer and leukoplakia. Int. J. Cancer129(9), 2207–2217 (2011).
  • Wang Q , GaoP, WangX, DuanY. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci. Rep.4, 6802 (2014).
  • Bos LD , Van WalreeIC, KolkAH, JanssenHG, SterkPJ, SchultzMJ. Alterations in exhaled breath metabolite-mixtures in two rat models of lipopolysaccharide-induced lung injury. J. Appl. Physiol.115(10), 1487–1495 (2013).
  • de Laurentiis G , ParisD, MelckDet al. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur. Respir. J.32(5), 1175–1183 (2008).
  • Basanta M , JarvisRM, XuYet al. Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst135(2), 315–320 (2010).
  • Fens N , DoumaRA, SterkPJ, KamphuisenPW. Breathomics as a diagnostic tool for pulmonary embolism. J. Thromb. Haemost.8(12), 2831–2833 (2010).
  • Sofia M , ManiscalcoM, De LaurentiisG, ParisD, MelckD, MottaA. Exploring airway diseases by NMR-based metabonomics: a review of application to exhaled breath condensate. J. Biomed. Biotechnol.2011, 403260 (2011).
  • Guallar-Hoyas C , TurnerMA, BlackburnGJ, WilsonID, ThomasCL. A workflow for the metabolomic/metabonomic investigation of exhaled breath using thermal desorption GC-MS. Bioanalysis4(18), 2227–2237 (2012).
  • Bos LD , WedaH, WangYet al. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur. Respir. J.44(1), 188–197 (2014).
  • Van Der Schee MP , PaffT, BrinkmanP, Van AalderenWM, HaarmanEG, SterkPJ. Breathomics in lung disease. Chest147(1), 224–231 (2015).
  • Motta A , ParisD, MelckDet al. Nuclear magnetic resonance-based metabolomics of exhaled breath condensate: methodological aspects. Eur. Respir. J.39(2), 498–500 (2012).
  • Krilaviciute A , HeissJA, LejaM, KupcinskasJ, HaickH, BrennerH. Detection of cancer through exhaled breath: a systematic review. Oncotarget6(36), 38643–38657 (2015).
  • Carraro S , GiordanoG, RenieroFet al. Asthma severity in childhood and metabolomic profiling of breath condensate. Allergy68(1), 110–117 (2013).
  • Gahleitner F , Guallar-HoyasC, BeardsmoreCS, PandyaHC, ThomasCP. Metabolomics pilot study to identify volatile organic compound markers of childhood asthma in exhaled breath. Bioanalysis5(18), 2239–2247 (2013).
  • Ibrahim B , MarsdenP, SmithJA, CustovicA, NilssonM, FowlerSJ. Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy68(8), 1050–1056 (2013).
  • Motta A , ParisD, D’AmatoMet al. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J. Proteome Res.13(12), 6107–6120 (2014).
  • Carraro S , RezziS, RenieroFet al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med.175(10), 986–990 (2007).
  • Mangler M , FreitagC, LanowskaM, StaeckO, SchneiderA, SpeiserD. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. Ginekol. Pol.83(10), 730–736 (2012).
  • Li J , PengY, LiuYet al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. Clin. Chim. Acta436, 59–67 (2014).
  • Montuschi P , ParisD, MelckDet al. NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax67(3), 222–228 (2012).
  • Monge ME , PerezJJ, DwivediPet al. Ion mobility and liquid chromatography/mass spectrometry strategies for exhaled breath condensate glucose quantitation in cystic fibrosis studies. Rapid Comm. Mass Spec.27(20), 2263–2271 (2013).
  • Qin T , LiuH, SongQet al. The screening of volatile markers for hepatocellular carcinoma. Cancer Epidemiol. Biomark. Prev.19(9), 2247–2253 (2010).
  • Kalluri U , NaikerM, MyersMA. Cell culture metabolomics in the diagnosis of lung cancer-the influence of cell culture conditions. J. Breath Res.8(2), 027109 (2014).
  • Handa H , UsubaA, MaddulaS, BaumbachJI, MineshitaM, MiyazawaT. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS ONE9(12), e114555 (2014).
  • Song G , QinT, LiuHet al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer67(2), 227–231 (2010).
  • Wang Y , HuY, WangDet al. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark.11(4), 129–137 (2012).
  • Zou Y , ZhangX, ChenX, HuY, YingK, WangP. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomark.14(5), 371–379 (2014).
  • Lamote K , NackaertsK, Van MeerbeeckJP. Strengths, weaknesses, and opportunities of diagnostic breathomics in pleural mesothelioma-a hypothesis. Cancer Epidemiol. Biomark. Prev.23(6), 898–908 (2014).
  • Montuschi P , ParisD, MontellaSet al. Nuclear magnetic resonance-based metabolomics discriminates primary ciliary dyskinesia from cystic fibrosis. Am. J. Respir. Crit. Care Med.190(2), 229–233 (2014).
  • Fowler SJ , Basanta-SanchezM, XuY, GoodacreR, DarkPM. Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax70(4), 320–325 (2015).
  • Bezabeh T , SomorjaiRL, SmithIC. MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magn. Res. Chem.47(Suppl. 1), S54–S61 (2009).
  • Gao X , Pujos-GuillotE, MartinJFet al. Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Anal. Biochem.393(2), 163–175 (2009).
  • Xu W , ChenD, WangNet al. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome. Anal. Chem.87(2), 829–836 (2015).
  • Ahmed I , GreenwoodR, Costello BdeL, RatcliffeNM, ProbertCS. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS ONE8(3), e58204 (2013).
  • Le Gall G , NoorSO, RidgwayKet al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res.10(9), 4208–4218 (2011).
  • Monleon D , MoralesJM, BarrasaA, LopezJA, VazquezC, CeldaB. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed.22(3), 342–348 (2009).
  • Goedert JJ , SampsonJN, MooreSCet al. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis35(9), 2089–2096 (2014).
  • Phua LC , ChueXP, KohPK, CheahPY, HoHK, ChanEC. Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol. Ther.15(4), 389–397 (2014).
  • Walker A , LucioM, PfitznerBet al. Importance of sulfur-containing metabolites in discriminating fecal extracts between normal and Type-2 diabetic mice. J. Proteome Res.13(10), 4220–4231 (2014).
  • Inagaki S , NodaT, MinJZ, Toyo’okaT. Metabolic profiling of rat hair and screening biomarkers using ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. J. Chromatogr. A1176(1–2), 94–99 (2007).
  • Gonska T , IpW, TurnerDet al. Sweat gland bioelectrics differ in cystic fibrosis: a new concept for potential diagnosis and assessment of CFTR function in cystic fibrosis. Thorax64(11), 932–938 (2009).
  • Calderon-Santiago M , Priego-CapoteF, TurckNet al. Human sweat metabolomics for lung cancer screening. Anal. Bioanal. Chem.407(18), 5381–5392 (2015).
  • Chalasani N , YounossiZ, LavineJEet al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology55(6), 2005–2023 (2012).
  • Wruck W , KashoferK, RehmanSet al. Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes. Sci. Data2, 150068 (2015).
  • Chen L , ZhouL, ChanEC, NeoJ, BeuermanRW. Characterization of the human tear metabolome by LC-MS/MS. J. Proteome Res.10(10), 4876–4882 (2011).
  • Pieragostino D , D’AlessandroM, Di IoiaM, Di IlioC, SacchettaP, Del BoccioP. Unraveling the molecular repertoire of tears as a source of biomarkers: beyond ocular diseases. Proteomics Clin. Appl.9(1–2), 169–186 (2015).