2,023
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages

, , &
Article: FSO142 | Accepted 29 Jul 2016, Published online: 22 Sep 2016

References

  • Caplan AI. Why are MSCs therapeutic? New data: new insight. J. Pathol. 217(2), 318–324 (2009).
  • Caplan AI. New era of cell-based orthopedic therapies. Tissue Eng. B Rev. 15(2), 195–200 (2009).
  • Trounson A, Mcdonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1), 11–22 (2015).
  • Murphy M, Barry F. Cellular chondroplasty: a new technology for joint regeneration. J. Knee Surg. 28(1), 45–50 (2015).
  • Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat. Rev. Rheumatol. 9(10), 584–594 (2013).
  • Acosta FL Jr, Lotz J, Ames CP. The potential role of mesenchymal stem cell therapy for intervertebral disc degeneration: a critical overview. Neurosurg. Focus 19(3), E4 (2005).
  • Hiyama A, Mochida J, Sakai D. Stem cell applications in intervertebral disc repair. Cell. Mol. Biol. (Noisy-le-grand) 54(1), 24–32 (2008).
  • Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur. Spine J. 15(Suppl. 3), S406–S413 (2006).
  • Ghosh P, Moore RD, Vernon-Roberts B et al. Immunoselected STRO-3+mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs. J Neurosurgery 16(5), 479–488 (2012).
  • Wei A, Chung SA, Tao H et al. Differentiation of rodent bone marrow mesenchymal stem cells into intervertebral disc-like cells following coculture with rat disc tissue. Tissue Eng. A 15(9), 2581–2595 (2009).
  • Gaetani P, Torre ML, Klinger M et al. Adipose-derived stem cell therapy for intervertebral disc regeneration: an in vitro reconstructed tissue in alginate capsules. Tissue Eng. A 14(8), 1415–1423 (2008).
  • Chen S, Emery SE, Pei M. Coculture of synovium-derived stem cells and nucleus pulposus cells in serum-free defined medium with supplementation of transforming growth factor-beta1: a potential application of tissue-specific stem cells in disc regeneration. Spine (Phila Pa 1976) 34(12), 1272–1280 (2009).
  • Murrell W, Sanford E, Anderberg L, Cavanagh B, Mackay-Sim A. Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model. Spine J. 9(7), 585–594 (2009).
  • Quintin A, Schizas C, Scaletta C et al. Isolation and in vitro chondrogenic potential of human foetal spine cells. J. Cell. Mol. Med. 13(8B), 2559–2569 (2009).
  • Correa D, Somoza RA, Lin P et al. Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthritis Cartilage 23(3), 443–453 (2015).
  • Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Fibroblast growth factor control of cartilage homeostasis. J. Cell. Biochem. 114(4), 735–742 (2013).
  • Shimoaka T, Ogasawara T, Yonamine A et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J. Biol. Chem. 277(9), 7493–7500 (2002).
  • Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2(3), REVIEWS3005 (2001).
  • Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16(12), 1446–1465 (2002).
  • Chuang CY, Lord MS, Melrose J et al. Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. Biochemistry 49(26), 5524–5532 (2010).
  • Knox S, Merry C, Stringer S, Melrose J, Whitelock J. Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J. Biol. Chem. 277(17), 14657–14665 (2002).
  • Handorf AM, Li WJ. Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS ONE 6(7), e22887 (2011).
  • Shu C, Smith SS, Little CB, Melrose J. Comparative immunolocalisation of perlecan, heparan sulphate, fibroblast growth factor-18, and fibroblast growth factor receptor-3 and their prospective roles in chondrogenic and osteogenic development of the human foetal spine. Eur. Spine J. 22(8), 1774–1784 (2013).
  • Smith SM, Shu C, Melrose J. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem. Cell Biol. 134(3), 251–263 (2010).
  • Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 15(6), 2223–2268 (2007).
  • Smith SM, Whitelock JM, Iozzo RV, Little CB, Melrose J. Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem. Cell Biol. 132(5), 491–503 (2009).
  • Chuang CY, Shahin K, Lord MS, Melrose J, Doran PM, Whitelock JM. The cartilage matrix molecule components produced by human foetal cartilage rudiment cells within scaffolds and the role of exogenous growth factors. Biomaterials 33(16), 4078–4088 (2012).
  • Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “Jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 30(5), 457–469 (2008).
  • Ehrlich G, Khaltaev Ng. Low Back Pain Initiative WHO/NCD/NCM/CRA/99.1 152 (1999). http://apps.who.int/iris/bitstream/10665/66296/1/WHO_NCD_NCM_CRA_99.1.pdf.
  • Weir C, Morel-Kopp MC, Gill A et al. Mesenchymal stem cells: isolation, characterisation and in vivo fluorescent dye tracking. Heart Lung Circ. 17(5), 395–403 (2008).
  • Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315–317 (2006).
  • Cheung WM, Ng WW, Kung AW. Dimethyl sulfoxide as an inducer of differentiation in preosteoblast MC3T3-E1 cells. FEBS Lett. 580(1), 121–126 (2006).
  • Melrose J, Smith SM, Smith MM, Little CB. The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotech. Histochem. 83(1), 47–53 (2008).
  • Melrose J, Shu C, Young C et al. Mechanical destabilization induced by controlled annular incision of the IVD dysregulates MMP expression and induces disc degeneration. Spine (Phila Pa 1976) 37(1), 18–25 (2012).
  • Melrose J, Smith S, Ghosh P. Histological and immunohistological studies on cartilage. Methods Mol. Med. 101, 39–63 (2004).
  • Caplan AI. MSCs: the sentinel and safe-guards of injury. J. Cell. Physiol. 231(7), 1413–1416 (2016).
  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98(5), 1076–1084 (2006).
  • Lai WT, Krishnappa V, Phinney DG. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells 29(7), 1102–1111 (2011).
  • Spector JA, Mathy JA, Warren SM et al. FGF-2 acts through an ERK1/2 intracellular pathway to affect osteoblast differentiation. Plast. Reconstr. Surg. 115(3), 838–852 (2005).
  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238(1), 265–272 (1998).
  • Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268(2), 189–200 (2001).
  • Chen WH, Lai MT, Wu AT et al. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis Rheum. 60(2), 450–459 (2009).
  • Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8(2), 272–288 (2012).
  • Munger JS, Sheppard D. Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol. 3(11), a005017 (2011).
  • Fischer J, Dickhut A, Rickert M, Richter W. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 62(9), 2696–2706 (2010).
  • Guo J, Chung UI, Yang D, Karsenty G, Bringhurst FR, Kronenberg HM. PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev. Biol. 292(1), 116–128 (2006).
  • Stheneur C, Dumontier MF, Guedes C et al. Basic fibroblast growth factor as a selective inducer of matrix Gla protein gene expression in proliferative chondrocytes. Biochem. J. 369(Pt 1), 63–70 (2003).
  • Chen S, Young MF, Chakravarti S, Birk DE. Interclass small leucine-rich repeat proteoglycan interactions regulate collagen fibrillogenesis and corneal stromal assembly. Matrix Biol. 35, 103–111 (2014).
  • Douglas T, Heinemann S, Bierbaum S, Scharnweber D, Worch H. Fibrillogenesis of collagen types I, II, and III with small leucine-rich proteoglycans decorin and biglycan. Biomacromolecules 7(8), 2388–2393 (2006).
  • Reese SP, Underwood CJ, Weiss JA. Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels. Matrix Biol. 32(7–8), 414–423 (2013).
  • Ferdous Z, Wei VM, Iozzo R, Hook M, Grande-Allen KJ. Decorin-transforming growth factor-interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices. J. Biol. Chem. 282(49), 35887–35898 (2007).
  • Roughley PJ. The structure and function of cartilage proteoglycans. Eur. Cells Mater. 12, 92–101 (2006).
  • Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J. Biol. Chem. 283(31), 21305–21309 (2008).
  • Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 277(19), 3864–3875 (2010).
  • Iozzo R, Goldoni S, Berendson Ad, Young Mf. Small leucine rich proteoglycans. In: The Extracellular Matrix: an Overview. Mecham R ( Ed.). Springer Berlin, Heidelberg 197–231 (2011).
  • Border WA, Noble NA, Yamamoto T et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360(6402), 361–364 (1992).
  • Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346(6281), 281–284 (1990).
  • Waddington RJ, Roberts HC, Sugars RV, Schonherr E. Differential roles for small leucine-rich proteoglycans in bone formation. Eur. Cells Mater. 6, 12–21; discussion 12 (2003).
  • Mochida Y, Duarte WR, Tanzawa H, Paschalis EP, Yamauchi M. Decorin modulates matrix mineralization in vitro. Biochem. Biophys. Res. Commun. 305(1), 6–9 (2003).
  • Takagi M, Yamada T, Kamiya N, Kumagai T, Yamaguchi A. Effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of decorin and biglycan by cultured osteoblastic cells. Histochem. J. 31(6), 403–409 (1999).
  • Melrose J, Isaacs MD, Smith SM et al. Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem. Cell Biol. 138(3), 461–475 (2012).
  • Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J. The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J. Biol. Chem. 281(48), 36905–36914 (2006).
  • Melrose J, Smith S, Cake M, Read R, Whitelock J. Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem. Cell Biol. 123(6), 561–571 (2005).
  • Whitelock JM, Melrose J, Iozzo RV. Diverse cell signaling events modulated by perlecan. Biochemistry 47(43), 11174–11183 (2008).
  • Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI. Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J. Rheumatol. 25(3), 506–514 (1998).
  • Caterson B. Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int. J. Exp. Pathol. 93(1), 1–10 (2012).
  • Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng. A 16(3), 1009–1019 (2010).
  • Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203(2), 398–409 (2005).
  • Shu C, Smith SS, Little CB, Melrose J. Comparative immunolocalisation of perlecan, heparan sulphate, fibroblast growth factor-18, and fibroblast growth factor receptor-3 and their prospective roles in chondrogenic and osteogenic development of the human foetal spine. Eur. Spine J. 22(8), 1774–1841 (2013).