1,407
Views
1
CrossRef citations to date
0
Altmetric
Preliminary Communication

The Rapid Detection of Cefotaxime-Resistant Enterobacteriaceae by HPLC

, &
Article: FSO143 | Accepted 05 Aug 2016, Published online: 09 Sep 2016

References

  • Kang CI, Kim SH, Park WB et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob. Agents Chemother. 49(2), 760–766 (2005).
  • Thomas MG, Smith AJ, Tilyard M. Rising antimicrobial resistance: a strong reason to reduce excessive antimicrobial consumption in New Zealand. N. Z. Med. J. 127(1394), 72–84 (2014).
  • Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief 62, 1–8 (2011).
  • Vincent JL, Sakr Y, Sprung CL et al. Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med. 34(2), 344–353 (2006).
  • Dellinger RP, Levy MM, Rhodes A et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. 2012. Crit. Care Med. 39(2), 165–228 (2013).
  • Kumar A, Roberts D, Wood KE et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34(6), 1589–1596 (2006).
  • Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 119(6), S20–S28 (2006).
  • Wiegand I, Geiss HK, Mack D, Stürenburg E, Seifert H. Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. J. Clin. Microbiol. 45(4), 1167–1174 (2007).
  • WHO Antimicrobial resistance: global report on surveillance. 2014. www.who.int/drugresistance/documents/surveillancereport/en/.
  • Jacoby GA. AmpC beta-lactamases. Clin. Microbiol. Rev. 22(1), 161–182 (2009).
  • Performance standards for antimicrobial susceptibility testing: 24th informational supplement. CLSI M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2014). http://microbiolab-bg.com/wp-content/uploads/2015/05/CLSI-2014.pdf.
  • Fournier PE, Drancourt M, Colson P, Rolain JM, La Scola B, Raoult D. Modern clinical microbiology: new challenges and solutions. Nat. Rev. Microbiol. 11(8), 574–585 (2013).
  • Guidance for industry bioanalytical method validation. US Department of Health and Human Services, US FDA, Rockville, MD, USA (2001). www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf.
  • Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65(3), 490–495 (2010).
  • Stefani S. Diagnostic techniques in bloodstream infections: where are we going? Int. J. Antimicrob. Agents. 34, S9–S12 (2009).
  • Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8(3), 159–166 (2008).
  • Paterson DL, Ko W-C, Von Gottberg A et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum β-lactamases: implications for the clinical microbiology laboratory. J. Clin. Microbiol. 39(6), 2206–2212 (2001).
  • Thomson JM, Bonomo RA. The threat of antibiotic resistance in gram-negative pathogenic bacteria: beta-lactams in peril! Curr. Opin. Microbiol. 8(5), 518–524 (2005).
  • Wang P, Hu F, Xiong Z et al. Susceptibility of extended-spectrum-beta-lactamase-producing Enterobacteriaceae according to the new CLSI breakpoints. J. Clin. Microbiol. 49(9), 3127–3131 (2011).
  • Liu PY, Shi ZY, Tung KC et al. Antimicrobial resistance to cefotaxime and ertapenem in Enterobacteriaceae: the effects of altering clinical breakpoints. J. Infect. Dev. Ctries. 8(3), 289–296 (2014).
  • Pop-Vicas A, Opal SM. The clinical impact of multidrug-resistant gram-negative bacilli in the management of septic shock. Virulence 5(1), 206–212 (2014).
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 54(3), 969–976 (2010).
  • Annual survey of extended-spectrum B-lactamase (ESBL)-producing Enterobacteriaceae. Institute of Environmental Science and Research Limited (ESR), Antibiotic Reference Library, New Zealand (2013). https://surv.esr.cri.nz/PDF_surveillance/Antimicrobial/ESBL/ESBL_2013.pdf.
  • Livermore D. Defining an extended-spectrum β-lactamase. Clin. Microbiol. Infect. 14, 3–10 (2008).
  • Queenan AM, Foleno B, Gownley C, Wira E, Bush K. Effects of inoculum and β-lactamase activity in AmpC-and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J. Clin. Microbiol. 42(1), 269–275 (2004).
  • Poulou A, Grivakou E, Vrioni G et al. Modified CLSI extended-spectrum β-lactamase (ESBL) confirmatory test for phenotypic detection of ESBLs among Enterobacteriaceae producing various β-lactamases. J. Clin. Microbiol. 52(5), 1483–1489 (2014).
  • Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of beta-lactam resistance in Enterobacteriaceae derived from blood cultures. J. Clin. Microbiol. 52(3), 924–930 (2014).
  • Robinson AM, Ussher JE. Preparation of positive blood cultures for direct MALDI-ToF MS identification. J. Microbiol. Methods 127, 74–76 (2016).
  • Gilroy N, Iredell J. The clinical and public health challenge of gram-negative resistance in Australasia. Future Microbiol. 9(1), 17–20 (2014).
  • Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 49(9), 3321–3324 (2011).
  • Hrabak J, Studentova V, Walkova R et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 50(7), 2441–2443 (2012).
  • Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J. Clin. Microbiol. 50(3), 927–937 (2012).
  • Vogne C, Prod’hom G, Jaton K, Decosterd LA, Greub G. A simple, robust and rapid approach to detect carbapenemases in gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole tandem mass spectrometry, microarray and PCR. Clin. Microbiol. Infect. 20(12), O1106–1112 (2014).
  • Grundt A, Findeisen P, Miethke T, Jager E, Ahmad-Nejad P, Neumaier M. Rapid detection of ampicillin resistance in Escherichia coli by quantitative mass spectrometry. J. Clin. Microbiol. 50(5), 1727–1729 (2012).
  • Carvalhaes CG, Cayo R, Visconde MF et al. Detection of carbapenemase activity directly from blood culture vials using MALDI-TOF MS: a quick answer for the right decision. J. Antimicrob. Chemother. 69(8), 2132–2136 (2014).
  • Youn JH, Drake SK, Weingarten RA, Frank KM, Dekker JP, Lau AF. Clinical performance of a matrix-assisted laser desorption ionization-time of flight mass spectrometry method for detection of certain blaKPC-containing plasmids. J. Clin. Microbiol. 54(1), 35–42 (2016).
  • Peaper DR, Kulkarni MV, Tichy AN, Jarvis M, Murray TS, Hodsdon ME. Rapid detection of carbapenemase activity through monitoring ertapenem hydrolysis in Enterobacteriaceae with LC–MS/MS. Bioanalysis 5(2), 147–157 (2013).
  • Burrer A, Findeisen P, Jager E et al. Rapid detection of cefotaxime-resistant Escherichia coli by LC–MS. Int. J. Med. Microbiol. 305(8), 860–864 (2015).