5,316
Views
57
CrossRef citations to date
0
Altmetric
Perspective

Integration Concepts for Multi-Organ Chips: How to Maintain Flexibility?!

, &
Article: FSO180 | Received 15 Dec 2016, Accepted 01 Feb 2017, Published online: 13 Mar 2017

References

  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab On A Chip 12(12), 2165–2174 (2012).
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).
  • Rennert K, Steinborn S, Gröger M et al. A microfluidically perfused three dimensional human liver model. Biomaterials 71, 119–131 (2015).
  • Gröger M, Rennert K, Giszas B et al. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model. Sci. Rep. 6, 21868 (2016).
  • Mao S, Gao D, Liu W, Wei H, Lin JM. Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab On A Chip 12, 219–226 (2012).
  • Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97(5), 1340–1346 (2007).
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
  • Huh D, Leslie DC, Matthews BD et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4(159), 159ra147 (2012).
  • Huh D, Kim HJ, Fraser JP et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8(11), 2135–2157 (2013).
  • Huebsch N, Loskill P, Deveshwar N et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci. Rep. 6, 24726 (2016).
  • Mathur A, Loskill P, Shao K et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).
  • Thavandiran N, Dubois N, Mikryukov A et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues: Table 1. Proc. Natl Acad. Sci. USA 111(47), E4698–E4707 (2014).
  • Grosberg A, Alford PW, Mccain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab On A Chip 11(24), 4165–4173 (2011).
  • Lind JU, Busbee TA, Valentine AD et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. doi:10.1038/NMAT4782 (2016) ( Epub ahead of print).
  • Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab On A Chip 12(10), 1725–1904 (2012).
  • Prabhakarpandian B, Shen M-C, Nichols JB et al. SyM-BBB: a microfluidic blood brain barrier model. Lab On A Chip 13, 1093–1101 (2013).
  • Kilic O, Pamies D, Lavell E et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab On A Chip 16, 4152–4162 (2016).
  • Berdichevsky Y, Staley KJ, Yarmush ML. Building and manipulating neural pathways with microfluidics. Lab On A Chip 10, 999–1004 (2010).
  • Meer ADVD, Orlova VV, Dijke PT, Berg AVD, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab On A Chip 13, 3562–3568 (2013).
  • Kim Y, Lobatto ME, Kawahara T et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc. Natl Acad. Sci. USA 111(3), 1078–1083 (2014).
  • Torisawa Y-S, Spina CS, Mammoto T et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11(6), 663–669 (2014).
  • Vidi P-A, Maleki T, Ochoa M et al. Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab On A Chip 14, 172–177 (2013).
  • Bersini S, Jeon JS, Dubini G et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014).
  • Achyuta AKH, Conway AJ, Crouse RB et al. A modular approach to create a neurovascular unit-on-a-chip. Lab On A Chip 13, 542–553 (2013).
  • Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20(1), 316–323 (2004).
  • Zhang C, Zhao Z, Abdul Rahim NA, Van Noort D, Yu H. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab On A Chip 9, 3185–3192 (2009).
  • Wikswo JP, Block FE, Cliffel DE et al. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng. 60(3), 682–690 (2013).
  • Wikswo JP, Curtis EL, Eagleton ZE et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab On A Chip 13, 3496–3511 (2013).
  • Moraes C, Labuz JM, Leung BM, Inoue M, Chun T-H, Takayama S. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5, 1149–1161 (2013).
  • Abaci HE, Shuler ML. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7(4), 383–391 (2015).
  • Tsaioun K. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. Altex 33(4), 343–358 (2016).
  • Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR, Cantilena Jr LR. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin. Pharmacol. Ther. 52(3), 231–238 (1992).
  • Rautio J, Kumpulainen H, Heimbach T et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7(3), 255–270 (2008).
  • Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol. Rep. 65, 1–14 (2013).
  • Imura Y, Yoshimura E, Sato K. Micro total bioassay system for oral drugs: evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Anal. Sci. 28(3), 197–199 (2012).
  • Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20(2), 590–597 (2004).
  • Zhang C, Zhao Z, Abdul Rahim NA, Van Noort D, Yu H. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments - supplementary information: preparation of common medium. Lab On A Chip 9(22), 3185–3192 (2009).
  • Sung JH, Shuler ML. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab On A Chip 9(10), 1385–1394 (2009).
  • Esch MB, Mahler GJ, Stokol T, Shuler ML. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab On A Chip 14(16), 3081–3092 (2014).
  • Wagner I, Materne E-M, Brincker S et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab On A Chip 13(18), 3538–3547 (2013).
  • Maschmeyer I, Lorenz AK, Schimek K et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab On A Chip 15(12), 2688–2699 (2015).
  • Schimek K, Busek M, Brincker S et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab On A Chip 13(18), 3588–3598 (2013).
  • Ma L, Barker J, Zhou C et al. Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system. Biomaterials 33(17), 4353–4361 (2012).
  • Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab On A Chip 10(4), 446–455 (2010).
  • Loskill P, Marcus SG, Mathur A, Reese WM, Healy KE. μorgano: a Lego®-like plug & play system for modular multi-organ-chips. PLoS ONE 10(10), e0139587 (2015).
  • Raasch M, Rennert K, Jahn T et al. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Biofabrication 7(1), 015013 (2015).
  • Raasch M, Rennert K, Jahn T et al. An integrative microfluidically supported in vitro model of an endothelial barrier combined with cortical spheroids simulates effects of neuroinflammation in neocortex development. Biomicrofluidics 10, 044102 (2016).
  • Yang Y, Li J, Pan X et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol. Bioeng. 110(3), 958–968 (2013).
  • Li YSJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38(10), 1949–1971 (2005).
  • Garcia-Cardeña G, Comander J, Anderson KR, Blackman BR, Gimbrone MA. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. USA 98(8), 4478–4485 (2001).
  • Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Controlled electromechanical cell stimulation on-a-chip. Sci. Rep. 5, 11800 (2015).
  • Brewer GJ, Boehler MD, Leondopulos S et al. Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3. Front. Neural Circuits 7, 165 (2013).
  • Song JW, Cavnar SP, Walker AC et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE 4(6), e5756 (2009).
  • Aref AaR, Huang RRY-J, Yu W et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr. Biol. 5(2), 381–389 (2013).
  • Mccain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl Acad. Sci. USA 110(24), 9770–9775 (2013).
  • Wang G, Mccain ML, Yang L et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20(6), 616–623 (2014).
  • Clarke SLN, Bowron A, Gonzalez IL et al. Barth syndrome. Orphanet. J. Rare Dis. 8, 23 (2013).
  • Fabre KM, Livingston C, Tagle DA. Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue. Exp. Biol. Med. 239(9), 1073–1077 (2014).
  • Esch MB, Smith AST, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices can help foster drug development. Adv. Drug Del. Rev. 69–70, 158–169 (2014).
  • Mousavi Shaegh SA, De Ferrari F, Zhang YS et al. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 10(4), 044111 (2016).
  • Weltin A, Slotwinski K, Kieninger J et al. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab On A Chip 14(1), 138–146 (2014).
  • Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotechnol. 25, 45–50 (2014).
  • Yang C, Al-Aama J, Stojkovic M et al. Concise review: cardiac disease modeling using induced pluripotent stem cells. Stem Cells 33(9), 2643–2651 (2015).
  • Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).
  • Nakagawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26(1), 101–106 (2008).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007).