3,766
Views
48
CrossRef citations to date
0
Altmetric
Review

The Ascendance of Microphysiological Systems to Solve the Drug Testing Dilemma

, &
Article: FSO0185 | Received 06 Jan 2017, Accepted 14 Feb 2017, Published online: 31 Mar 2017

References

  • Paul SM, Mytelka DS, Dunwiddie CT et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).
  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32(1), 40–51 (2014).
  • Waring MJ, Arrowsmith J, Leach AR et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14(7), 475–486 (2015).
  • Cook D, Brown D, Alexander R et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13(6), 419–431 (2014).
  • Kerbrat A, Ferré J-C, Fillatre P et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N. Engl. J. Med. 375(18), 1717–1725 (2016).
  • ANSM: Agence Nationale de Sécurité du Médicament. Report by the Temporary Specialist Scientific Committee (TSSC), “FAAH (Fatty Acid Amide Hydrolase)”, on the causes of the accident during a Phase 1 clinical trial in Rennes in January 2016 (2016). http://ansm.sante.fr/var/ansm_site/storage/original/application/744c7c6daf96b141bc9509e2f85c227e.pdf.
  • Hartung T, Rovida C. Chemical regulators have overreached. Nature. 460(7259), 1080–1081 (2009).
  • Long G, Works J. Innovation in the biopharmaceutical pipeline: a multidimensional view (2013). www.analysisgroup.com/uploadedfiles/content/insights/publishing/2012_innovation_in_the_biopharmaceutical_pipeline.pdf.
  • Horner MJ, Hinrichs MJ, Buss N. Safety assessment strategies and predictive safety of biopharmaceuticals and antibody drug conjugates. In: Drug discovery toxicology: From target assessment to translational biomarkers. Will Y, McDuffie JE, Olaharski AJ, Jeffy BD ( Eds). John Wiley & Sons Inc, 27–38 (2016).
  • Coleman MD, O'Neil JD, Woehrling EK et al. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro. PLoS ONE 7(8), e42768 (2012).
  • Griesinger C, Desprez B, Coecke S, Casey W, Zuang V. Validation of alternative in vitro methods to animal testing: concepts, challenges, processes and tools. In: Advances In Experimental Medicine And Biology. Eskes C, Whelan M ( Eds). Springer International Publishing, 65–132 (2016).
  • Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA 296(14), 1727–1732 (2006).
  • Seok J, Warren HS, Cuenca AG et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110(9), 3507–3512 (2013).
  • van der Worp HB, Howells DW, Sena ES et al. Can animal models of disease reliably inform human studies? PLoS Med. 7(3), e1000245 (2010).
  • Leist M, Hartung T. Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch. Toxicol. 87(4), 563–567 (2013).
  • Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int. J. Med. Sci. 10(3), 206–221 (2013).
  • Hartung T. Per aspirin ad astra. Altern. Lab. Anim. 37(Suppl. 2), 45–47 (2009).
  • Woosley RL. Mechanism of the cardiotoxic actions of terfenadine. JAMA 269(12), 1532 (1993).
  • EU: European Union. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (2009).
  • ECHA: European Chemicals Agency. The use of alternatives to testing on animals for the REACH regulation. Helsinki (2014). https://echa.europa.eu/about-us/the-way-we-work/plans-and-reports.
  • Westein E, van der Meer AD, Kuijpers MJE, Frimat J-P, van den Berg A, Heemskerk JWM. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl Acad. Sci. USA. 110(4), 1357–1362 (2013).
  • Maschmeyer I, Lorenz AK, Schimek K et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip. 15(12), 2688–2699 (2015).
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 328(5986), 1662–1668 (2010).
  • Maidhof R, Tandon N, Lee EJ et al. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J. Tissue Eng. Regen. Med. 6(10), e12–e23 (2012).
  • Harink B, Le Gac S, Truckenmüller R, van Blitterswijk C, Habibovic P. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab. Chip. 13(18), 3512–3528 (2013).
  • Pörtner R, Giese C. An overview on bioreactor design, prototyping and process control for reproducible three-dimensional tissue culture. In: Drug Testing In Vitro: Breakthroughs and Trends in Cell Culture Technology. Marx U, Sandig V ( Eds). Wiley-VCH, 3, 53–78 (2006).
  • Marx U, Walles H, Hoffmann S et al. “Human-on-a-chip” developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern. Lab. Anim. 40(5), 235–257 (2012).
  • Grist SM, Schmok JC, Liu MC, Chrostowski L, Cheung KC. Designing a microfluidic device with integrated ratiometric oxygen sensors for the long-term control and monitoring of chronic and cyclic hypoxia. Sensors (Basel) 15(8), 20030–20052 (2015).
  • Ochs CJ, Kasuya J, Liebsch G. au2D-Visualisierung des zellulären Sauerstoff verbrauchs in Mikrofluidiksystemen. BIOspektrum 20(7), 773–775 (2014).
  • Wagner I, Materne E-M, Marx U et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18), 3538–3547 (2013).
  • Powers MJ, Domansky K, Kaazempur-mofrad MR et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78(3), 257–269 (2002).
  • Sin A, Baxter GT, Shuler ML. Animal on a chip: a microscale cell culture analog device for evaluating toxicological and pharmacological profiles. Microfluid. BioMEMS 4560, 98–101 (2001).
  • Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33(3), 272–321 (2016).
  • Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89(1), 1–8 (2005).
  • Zhang MY, Lee PJ, Hung PJ, Johnson T, Lee LP, Mofrad MRK. Microfluidic environment for high density hepatocyte culture. Biomed. Microdevices 10(1), 117–121 (2008).
  • Sivaraman A, Leach JK, Townsend S et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6(6), 569–591 (2005).
  • Gordon S, Daneshian M, Bouwstra J et al. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX 32(4), 327–378 (2015).
  • Benam KH, Villenave R, Lucchesi C et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13(2), 151–157 (2016).
  • Jan K-J, Mehr AP, Hamilton GA et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5(9), 1119–1129 (2013).
  • Korin N, Kanapathipillai M, Matthews BD et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095), 738–742 (2012).
  • Jain A, van der Meer AD, Papa A-L et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed. Microdevices 18(4), 73 (2016).
  • Torisawa Y, Spina CS, Mammoto T et al. Bone marrow-on–a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11(6), 663–669 (2014).
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 12, 2165–2174 (2012).
  • Trietsch JS, Israëls G, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip 13, 3548–3554 (2013).
  • Wevers NR, Van Vught R, Wilschut KJ et al. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci. Rep. 6, 1–10 (2016).
  • Kim J, Fluri DA, Kelm JM, Hierlemann A, Frey O. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J. Lab. Autom. 20(3), 274–282 (2015).
  • Kim J-Y, Fluri DA, Marchan R et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J. Biotechnol. 205, 24–35 (2015).
  • Kelm JM, Fussenegger M. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol. 22(4), 195–202 (2004).
  • Messner S, Agarkova I, Moritz W, Kelm JM. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch. Toxicol. 87(1), 209–213 (2013).
  • Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 5, 1–11 (2014).
  • Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20(2), 590–597 (2004).
  • Oleaga C, Bernabini C, Smith AST et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 1–17 (2016).
  • Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20(1), 316–323 (2004).
  • Tatosian Da, Shuler ML. A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol. Bioeng. 103(1), 187–198 (2009).
  • Miller PG, Shuler ML. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng. 113(10), 2213–2227 (2016).
  • Ding B-S, Nolan DJ, Butler JM et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321), 310–315 (2010).
  • Schimek K, Busek M, Brincker S et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip. 13(18), 3588–3598 (2013).
  • Hasenberg T, Mühleder S, Dotzler A et al. Emulating human microcapillaries in a multi-organ-chip platform. J. Biotechnol. 216, 1–10 (2015).
  • Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43(5), 575, 577–578, 581–582 passim (2007).
  • Kleensang A, Vantangoli MM, Odwin-DaCosta S et al. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Sci. Rep. 6, 28994 (2016).
  • Olarerin-George AO, Hogenesch JB. Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI's RNA-seq archive. Nucleic Acids Res. 43(5), 2535–2542 (2015).
  • Tolosa L, Gómez-Lechón MJ, López S et al. Human upcyte hepatocytes: characterization of the hepatic phenotype and evaluation for acute and long-term hepatotoxicity routine testing. Toxicol. Sci. 152(1), 214–229 (2016).
  • Schaefer M, Schänzle G, Bischoff D, Süssmuth RD. Upcyte human hepatocytes: a potent in vitro tool for the prediction of hepatic clearance of metabolically stable compounds. Drug Metab. Dispos. 44(3), 435–444 (2016).
  • Lipps C, May T, Hauser H, Wirth D. Eternity and functionality – rational access to physiologically relevant cell lines. Biol. Chem. 394(12), 1637–1648 (2013).
  • Ramachandran SD, Schirmer K, Münst B et al. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE 10(10), e0139345 (2015).
  • Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell Biol. 13(11), 713–726 (2012).
  • Maschmeyer I, Hasenberg T, Jaenicke A et al. Chip-based human liver-intestine and liver-skin co-cultures – A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 95, 77–87 (2015).
  • van Midwoud PM, Janse A, Merema MT, Groothuis GMM, Verpoorte E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84(9), 3938–3944 (2012).
  • Emulate I. Collaboration with J&J Innovation – Emulate, Inc (2015). https://emulatebio.com/press/strategic-collaboration/.
  • CN Bio Innovations. CN Bio Innovations marks World Hepatitis Day by signing research agreement with Imperial College London (2014). http://cn-bio.com/cn-bio-innovations-marks-world-hepatitis-day-signing-research-agreement-imperial-college-london/.
  • TissUse GmbH. Multi-organ-chips revolutionize drug testing (2014). www.tissuse.com/en/news/press-releases/.
  • EMA: European Medicines Agency. Draft guideline on regulatory acceptance of 3Rs (Replacement, Reduction, Refinement) testing approaches. www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/10/WC500174977.pdf.
  • Pamies D, Bal-Price A, Simeonov A et al. Good cell culture practice for stem cells and stem-cell-derived models. ALTEX. doi:10.14573/altex.1607121 (2016) ( Epub ahead of print).
  • Horvath P, Aulner N, Bickle M et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15(11), 751–769 (2016).
  • OECD: Organisation for Economic Co-operation and Development. Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment. No. 34, 1–96 (2005). www.oecd.org/chemicalsafety/testing/seriesontestingandassessmentpublicationsbynumber.htm.
  • US-Congress. The Frank R. Lautenberg chemical safety for the 21st century act (2016). www.epa.gov/assessing-and-managing-chemicals-under-tsca/frank-r-lautenberg-chemical-safety-21st-century-act.
  • Wang B, Gray G. Concordance of noncarcinogenic endpoints in rodent chemical bioassays. Risk Anal. 35(6), 1154–1166 (2015).
  • Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T. Analysis of publically available skin sensitization data from REACH registrations 2008-2014. ALTEX 33(2), 135–148 (2016).
  • Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H, Hartung T. Analysis of Draize eye irritation testing and its prediction by mining publicly available 2008-2014 REACH data. ALTEX 33(2), 123–134 (2016).
  • OECD: Organisation for Economic Co-operation and Development. Test No. 429: Skin Sensitisation (2016). www.oecd-ilibrary.org/content/book/9789264071100-en.
  • Browne P, Judson RS, Casey WM, Kleinstreuer NC, Thomas RS. Screening chemicals for estrogen receptor bioactivity using a computational model. Environ. Sci. Technol. 49(14), 8804–8814 (2015).
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014).
  • Ahadian S, Ramón-Azcón J, Ostrovidov S et al. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab Chip. 12(18), 3491–3503 (2012).
  • Johnstone AFM, Gross GW, Weiss DG, Schroeder OH-U, Gramowski A, Shafer TJ. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4), 331–350 (2010).
  • Ferrell N, Desai RR, Fleischman AJ, Roy S, Humes HD, Fissell WH. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Biotechnol. Bioeng. 107(4), 707–716 (2010).
  • Kim HJ, Huh D, Hamilton G, Ingber DE, Links DA. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12), 2165–2174 (2012).
  • Yu J, Peng S, Luo D, March JC. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109(9), 2173–2178 (2012).
  • Domansky K, Inman W, Serdy J, Dash A, Lim MHM, Griffith LG. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1), 51–58 (2010).