2,003
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Biocompatible Nickel-Prussian Blue@Silver Nanocomposites Show Potent Antibacterial Activities

, , &
Article: FSO233 | Received 13 Apr 2017, Accepted 28 Jun 2017, Published online: 06 Sep 2017

References

  • Lian HN, Hu M, Liu CH, Yamauchi Y, Wu KC. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem. Commun. 48(42), 5151–5153 (2012).
  • Wang SJ, Chen CS, Chen LC. Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Sci. Technol. Adv. Mat. 14(4), 044405 (2013).
  • Mukherjee S, Rao BR, Sreedhar B, Paik P, Patra CR. Copper prussian blue analogue: investigation into multifunctional activities for biomedical applications. Chem. Commun. 51(34), 7325–7328 (2015).
  • Dumont MF, Hoffman HA, Yoon PR et al. Biofunctionalized gadolinium-containing prussian blue nanoparticles as multimodal molecular imaging agents. Bioconjug. Chem. 25(1), 129–137 (2014).
  • Mohammadreza S, Soehnlen ES, Hao J et al. Dual purpose prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents. J. Mater. Chem. 20(25), 5251–5259 (2010).
  • Fiorito PA, Gonçales VR, Ponzio EA, de Torresi SI. Synthesis, characterization and immobilization of prussian blue nanoparticles. A potential tool for biosensing devices. Chem. Commun. 25(1), 366–368 (2005).
  • Liang X, Deng Z, Jing L et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging. Chem. Commun. 49(94), 11029–11031 (2013).
  • Fu G, Liu W, Feng S, Yue X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 48(94), 11567–11569 (2012).
  • Food and Drug Administration. Prussian blue (ferric hexacyanoferrate (II)) for treatment of internal contamination with thallium or radioactive cesium, November (2015). www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130334.htm.
  • Cheng L, Gong H, Zhu W et al. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 35(37), 9844–9852 (2014).
  • Jing L, Liang X, Deng Z et al. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22), 5814–5821 (2014).
  • Mukherjee S, Chowdhury D, Kotcherlakota R et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3), 316–335 (2014).
  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31), 6341–6350 (2009).
  • Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28(11), 580–588 (2010).
  • Mukherjee S, Patra CR. Biologically synthesized metal nanoparticles: recent advancement and future perspectives in cancer theranostics. Future Science OA. doi:10.4155/fsoa-2017-0035 (2017) ( Epub ahead of print).
  • Deshmukh KR, Ramanan SR, Kowshik M. Low temperature processed biocompatible AgHAp nanoparticles with antibiofilm efficacy for tissue engineering applications. J. Sol-Gel Sci. Technol. 80(3), 738–747 (2016).
  • Jadalannagari S, Deshmukh KR, Ramanan SR, Kowshik M. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Appl. Nanosci. 4(2), 133–141 (2014).
  • Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 344(17), 2375–2382 (2009).
  • Tan X, Wang J, Pang X et al. Indocyanine green-loaded silver nanoparticle@polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light triggered photothermal and photodynamic therapy. ACS Appl. Mater. Interfaces 8(51), 34991–35003 (2016).
  • Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J. Pharm. Biomed. Anal. 93, 136–146 (2014).
  • Hoerr V, Tuchscherr L, Hüve J et al. Bacteria tracking by in vivo magnetic resonance imaging. BMC Biol. 11(1), 63–76 (2013).
  • Hill PJ, Stritzker J, Scadeng M et al. Magnetic resonance imaging of tumors colonized with bacterial ferritin-expressing Escherichia coli. PLoS ONE 6(10), e25409 (2011).
  • Maurin-Pasturel G, Long J, Guari Y et al. Nanosized heterostructures of Au@Prussian blue analogues: towards multifunctionality at the nanoscale. Angew. Chem. Int. Ed. Engl. 53(15), 3872–3876 (2014).
  • Lokman NA, Elder AS, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int. J. Mol. Sci. 13(8), 9959–9970 (2012).
  • Mukherjee S, Sriram P, Barui AK et al. Graphene oxides show angiogenic properties. Adv. Healthc. Mater. 4(11), 1722–1732 (2015).
  • Wu XY, Deng WW, Qian JF, Cao YL, Ai XP, Yang HX. Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A. 1(35), 10130–10134 (2013).
  • Gomes WJAS, de Oliveira C, Huguenin F. Energy harvesting by nickel prussian blue analogue electrode in neutralization and mixing entropy batteries. Langmuir 31(31), 8710–8717 (2015).
  • Chen DH, Chen CJ. Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem. 12(5), 1557–1562 (2002).
  • Kong Q, Chen XG, Yao JL, Xue DS. Preparation of poly(N-vinyl-2-pyrrolidone)-stabilized transition metal (Fe, Co, Ni and Cu) hexacyanoferrate nanoparticles. Nanotechnology 16(1), 164–168 (2005).
  • Ng CW, Ding J, Shi Y. Structure and magnetic properties of copper (II) hexacyanoferrate (III) compound. J. Phys. Chem. Solids 62(4), 767–775 (2001).
  • Shen L, Wang Z, Chen L. Prussian blue analogues Mn [Fe(CN)6] 0.6667· n H2O cubes as an anode material for lithium-ion batteries. Dalton Trans. 44(38), 16746–16751 (2015).
  • Zhang XQ, Gong SW, Zhang Y et al. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 20(24), 5110–5116 (2010).
  • Xu J, Liu X, Chen Y, Zhou Y, Lu T, Tang Y. Platinum–cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 22(44), 23659–23667 (2012).
  • Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int. J. Nanomedicine 5, 385–399 (2010).
  • Lu X, Qian J, Zhou H et al. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int. J. Nanomedicine 6, 1889–1901 (2011).
  • Lu D, Liu Q, Zhang T et al. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles. Nat. Nanotechnol. 11, 682–686 (2016).
  • Patra S, Mukherjee S, Barui AK et al. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl. 53, 298–309 (2015).
  • Muthuraj B, Mukherjee S, Patra CR, Iyer PK. Amplified fluorescence from polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and cancer theranostics. ACS Appl. Mater. Interfaces 8(47), 32220–32229 (2016).
  • Gaddam RR, Mukherjee S, Punugupati N et al. Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications. Mater. Sci. Eng. C 73, 643–652 (2017).
  • Muthuraj B, Mukherjee S, Chowdhury SR, Patra CR, Iyer PK. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens. Bioelectron. 89, 636–644 (2017).