3,653
Views
22
CrossRef citations to date
0
Altmetric
Review

Quantitative Translational Modeling to Facilitate Preclinical to Clinical Efficacy & Toxicity Translation in Oncology

Article: FSO306 | Received 19 Dec 2017, Accepted 12 Mar 2018, Published online: 23 Apr 2018

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100(1), 57–70 (2000).
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1), 1–10 (2013).
  • Mullard A. Parsing clinical success rates. Nat. Rev. Drug Discov. 15(7), 447 (2016).
  • Ledford H. Translational research: 4 ways to fix the clinical trial. Nature 477(7366), 526–528 (2011).
  • Venkatakrishnan K, Friberg LE, Ouellet D et al. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities. Clin. Pharmacol. Ther. 97(1), 37–54 (2015).
  • Sharma MR, Maitland ML, Ratain MJ. Models of excellence: improving oncology drug development. Clin. Pharmacol. Ther. 92(5), 548–550 (2012).
  • US Department of Health and Human Services Food and Drug Administration. Critical path opportunities report (2006).www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4329b_02_05_Critical%20Path%20Report%202006.pdf.
  • Gottlieb S. How FDA plans to help consumer capitalize on advances in science (2017). https://blogs.fda.gov/fdavoice/index.php/tag/in-silico-tools/.
  • Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin. Pharmacol. Ther. 85(2), 217–221 (2009).
  • Jung J. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol. Res. 30(1), 1–5 (2014).
  • Wong H, Choo EF, Alicke B et al. Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin. Cancer Res. 18(14), 3846–3855 (2012).
  • Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66(7), 3351–3354; discussion 3354 (2006).
  • Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 66(7), 3355–3358; discussion 3358–3359 (2006).
  • Rocchetti M, Simeoni M, Pesenti E, De Nicolao G, Poggesi I. Predicting the active doses in humans from animal studies: a novel approach in oncology. Eur. J. Cancer 43(12), 1862–1868 (2007).
  • Bissery MC, Guenard D, Gueritte-Voegelein F, Lavelle F. Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res. 51(18), 4845–4852 (1991).
  • Houghton PJ, Morton CL, Tucker C et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49(7), 928–940 (2007).
  • Corbett TH, White K, Polin L et al. Discovery and preclinical antitumor efficacy evaluations of LY32262 and LY33169. Invest. New Drugs 21(1), 33–45 (2003).
  • Steiner P, Joynes C, Bassi R et al. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clin. Cancer Res. 13(5), 1540–1551 (2007).
  • Wong H, Vernillet L, Peterson A et al. Bridging the gap between preclinical and clinical studies using pharmacokinetic–pharmacodynamic modeling: an analysis of GDC-0973, a MEK inhibitor. Clin. Cancer Res. 18(11), 3090–3099 (2012).
  • Hather G, Liu R, Bandi S et al. Growth rate analysis and efficient experimental design for tumor xenograft studies. Cancer Inform. 13(Suppl. 4), 65–72 (2014).
  • Lobo ED, Balthasar JP. Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci. 4(4), E42 (2002).
  • Simeoni M, Magni P, Cammia C et al. Predictive pharmacokinetic–pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64(3), 1094–1101 (2004).
  • Bueno L, De Alwis DP, Pitou C et al. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-β kinase antagonist, in mice. Eur. J. Cancer 44(1), 142–150 (2008).
  • Jumbe NL, Xin Y, Leipold DD et al. Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice. J. Pharmacokinet. Pharmacodyn. 37(3), 221–242 (2010).
  • Kogame A, Tagawa Y, Shibata S et al. Pharmacokinetic and pharmacodynamic modeling of hedgehog inhibitor TAK-441 for the inhibition of Gli1 messenger RNA expression and antitumor efficacy in xenografted tumor model mice. Drug Metab. Dispos. 41(4), 727–734 (2013).
  • Salphati L, Wong H, Belvin M et al. Pharmacokinetic–pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Drug Metab. Dispos. 38(9), 1436–1442 (2010).
  • Yamazaki S, Skaptason J, Romero D et al. Pharmacokinetic–pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available cMet kinase inhibitor in human tumor xenograft mouse models. Drug Metab. Dispos. 36(7), 1267–1274 (2008).
  • Mould DR, Walz AC, Lave T, Gibbs JP, Frame B. Developing exposure/response models for anticancer drug treatment: special considerations. CPT Pharmacometrics Syst. Pharmacol. 4(1), 12–27 (2015).
  • Wong H, Belvin M, Herter S et al. Pharmacodynamics of 2-[4-[(1E)-1-(hydroxyimino)-2,3-dihydro-1H-inden-5-yl]-3-(pyridine-4-yl)-1H-pyraz ol-1-yl]ethan-1-ol (GDC-0879), a potent and selective B-Raf kinase inhibitor: understanding relationships between systemic concentrations, phosphorylated mitogen-activated protein kinase kinase 1 inhibition, and efficacy. J. Pharmacol. Exp. Ther. 329(1), 360–367 (2009).
  • Lombardo F, Waters NJ, Argikar UA et al. Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 2: clearance. J. Clin. Pharmacol. 53(2), 178–191 (2013).
  • Lombardo F, Waters NJ, Argikar UA et al. Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 1: volume of distribution at steady state. J. Clin. Pharmacol. 53(2), 167–177 (2013).
  • Margolskee A, Darwich AS, Pepin X et al. IMI – oral biopharmaceutics tools project – evaluation of bottom-up PBPK prediction success part 1: characterisation of the OrBiTo database of compounds. Eur. J. Pharm. Sci. 96, 598–609 (2017).
  • Li L, Gardner I, Dostalek M, Jamei M. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model. AAPS J 16(5), 1097–1109 (2014).
  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93(11), 2645–2668 (2004).
  • Wong H, Alicke B, West KA et al. Pharmacokinetic–pharmacodynamic analysis of vismodegib in preclinical models of mutational and ligand-dependent Hedgehog pathway activation. Clin. Cancer Res. 17(14), 4682–4692 (2011).
  • Tate SC, Cai S, Ajamie RT et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin. Cancer Res. 20(14), 3763–3774 (2014).
  • Palani S, Patel M, Huck J et al. Preclinical pharmacokinetic/pharmacodynamic/efficacy relationships for alisertib, an investigational small-molecule inhibitor of Aurora A kinase. Cancer Chemother. Pharmacol. 72(6), 1255–1264 (2013).
  • Betts AM, Haddish-Berhane N, Tolsma J et al. Preclinical to clinical translation of antibody-drug conjugates using PK/PD modeling: a retrospective analysis of inotuzumab ozogamicin. AAPS J 18(5), 1101–1116 (2016).
  • Chen X, Haddish-Berhane N, Moore P et al. Mechanistic projection of first in human dose for bispecific immuno-modulatory P-cadherin LP-DART – an integrated PK/PD modeling approach. Clin. Pharmacol. Ther. 3, 232–241 (2016).
  • Haddish-Berhane N, Shah DK, Ma D et al. On translation of antibody–drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. J. Pharmacokinet. Pharmacodyn. 40(5), 557–571 (2013).
  • Sapra P, Betts A, Boni J. Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody–drug conjugates. Expert Rev. Clin. Pharmacol. 6(5), 541–555 (2013).
  • Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody–drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J. Pharmacokinet. Pharmacodyn. 39(6), 643–659 (2012).
  • Singh AP, Maass KF, Betts AM et al. Evolution of antibody–drug conjugate tumor disposition model to predict preclinical tumor pharmacokinetics of Trastuzumab-Emtansine (T-DM1). AAPS J. 18(4), 861–875 (2016).
  • Lindauer A, Valiathan CR, Mehta K et al. Translational pharmacokinetic/pharmacodynamic modeling of tumor growth inhibition supports dose-range selection of the anti-PD-1 antibody pembrolizumab. CPT Pharmacometrics Syst. Pharmacol. 6(1), 11–20 (2017).
  • Huck JJ, Zhang M, Mettetal J et al. Translational exposure-efficacy modeling to optimize the dose and schedule of taxanes combined with the investigational Aurora A kinase inhibitor MLN8237 (alisertib). Mol. Cancer Ther. 13(9), 2170–2183 (2014).
  • Terranova N, Germani M, Del Bene F, Magni P. A predictive pharmacokinetic–pharmacodynamic model of tumor growth kinetics in xenograft mice after administration of anticancer agents given in combination. Cancer Chemother. Pharmacol. 72(2), 471–482 (2013).
  • Choo EF, Ng CM, Berry L et al. PK–PD modeling of combination efficacy effect from administration of the MEK inhibitor GDC-0973 and PI3K inhibitor GDC-0941 in A2058 xenografts. Cancer Chemother. Pharmacol. 71(1), 133–143 (2013).
  • Mackey MC. Cell kinetic status of haematopoietic stem cells. Cell Prolif. 34(2), 71–83 (2001).
  • Pang WW, Price EA, Sahoo D et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108(50), 20012–20017 (2011).
  • Craig M, Humphries AR, Mackey MC. An upper bound for the half-removal time of neutrophils from circulation. Blood 128(15), 1989–1991 (2016).
  • Rankin SM. The bone marrow: a site of neutrophil clearance. J. Leukoc. Biol. 88(2), 241–251 (2010).
  • Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J. Clin. Oncol. 20(24), 4713–4721 (2002).
  • Friberg LE, Sandstrom M, Karlsson MO. Scaling the time-course of myelosuppression from rats to patients with a semi-physiological model. Invest. New Drugs 28(6), 744–753 (2010).
  • Zandvliet AS, Karlsson MO, Schellens JHM, Copalu W, Beijnen JH, Huitema ADR. Two-stage model-based clinical trial design to optimize Phase I development of novel anticancer agents. Invest. New Drugs 28(1), 61–75 (2009).
  • Soto E, Keizer RJ, Trocóniz IF et al. Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents: two case studies. Invest. New Drugs 29(5), 984–995 (2010).
  • Hansson EK, Friberg LE. The shape of the myelosuppression time profile is related to the probability of developing neutropenic fever in patients with docetaxel-induced grade IV neutropenia. Cancer Chemother. Pharmacol. 69(4), 881–890 (2012).
  • Pastor ML, Laffont CM, Gladieff L, Schmitt A, Chatelut E, Concordet D. Model-based approach to describe G-CSF effects in carboplatin-treated cancer patients. Pharm. Res. 30(11), 2795–2807 (2013).
  • Poikonen P, Saarto T, Lundin J, Joensuu H, Blomqvist C. Leucocyte nadir as a marker for chemotherapy efficacy in node-positive breast cancer treated with adjuvant CMF. Br. J. Cancer 80(11), 1763–1766 (1999).
  • Stein A, Voigt W, Jordan K. Chemotherapy-induced diarrhea: pathophysiology frequency and guideline-based management. Ther. Adv. Med. Oncol. 2(1), 51–63 (2010).
  • Loriot Y, Perlemuter G, Malka D et al. Drug insight: gastrointestinal and hepatic adverse effects of molecular-targeted agents in cancer therapy. Nat. Clin. Pract. Oncol. 5(5), 268–278 (2008).
  • Gibson RJ, Stringer AM. Chemotherapy-induced diarrhoea. Curr. Opin. Support Palliat. Care 3(1), 31–35 (2009).
  • Benson AB, 3rd, Ajani JA, Catalano RB et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol. 22(14), 2918–2926 (2004).
  • Gamucci T, Moscetti L, Mentuccia L et al. Optimal tolerability and high efficacy of a modified schedule of lapatinib-capecitabine in advanced breast cancer patients. J. Cancer Res. Clin. Oncol. 140(2), 221–226 (2014).
  • Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4), 1001–1020 (1990).
  • Bach SP, Renehan AG, Potten CS. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21(3), 469–476 (2000).
  • Nordgaard I, Mortensen PB. Digestive processes in the human colon. Nutrition 11(1), 37–45 (1995).
  • Paulus U, Potten CS, Loeffler M. A model of the control of cellular regeneration in the intestinal crypt after perturbation based solely on local stem cell regulation. Cell Prolif. 25(6), 559–578 (1992).
  • Carulli AJ, Samuelson LC, Schnell S. Unraveling intestinal stem cell behavior with models of crypt dynamics. Integr. Biol. (Camb.) 6(3), 243–257 (2014).
  • Tomlinson IP, Bodmer WF. Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. Proc. Natl Acad. Sci. USA 92(24), 11130–11134 (1995).
  • Itzkovitz S, Blat IC, Jacks T, Clevers H, Van Oudenaarden A. Optimality in the development of intestinal crypts. Cell 148(3), 608–619 (2012).
  • Van Leeuwen IM, Mirams GR, Walter A et al. An integrative computational model for intestinal tissue renewal. Cell Prolif. 42(5), 617–636 (2009).
  • Shankaran H, Cronin A, Barnes J et al. Systems pharmacology model of gastrointestinal damage predicts species differences and optimizes clinical dosing schedules. CPT Pharmacometrics Syst. Pharmacol. 7(1), 26–33 (2017).
  • Hecht JR. Gastrointestinal toxicity or irinotecan. Oncology (Williston Park) 12(8 Suppl. 6), 72–78 (1998).
  • Gintant G, Sager PT, Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
  • Wolenski FS, Zhu AZ, Johnson M et al. Fasiglifam (TAK-875) alters bile acid homeostasis in rats and dogs: a potential cause of drug induced liver injury. Toxicol. Sci. 157(1), 50–61 (2017).
  • Sturla SJ, Boobis AR, Fitzgerald RE et al. Systems toxicology: from basic research to risk assessment. Chem. Res. Toxicol. 27(3), 314–329 (2014).
  • Gao H, Korn JM, Ferretti S et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21(11), 1318–1325 (2015).
  • Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17(2), 79–92 (2017).
  • Guinney J, Dienstmann R, Wang X et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21(11), 1350–1356 (2015).