4,071
Views
41
CrossRef citations to date
0
Altmetric
Review

Mass Spectrometry-Based Intraoperative Tumor Diagnostics

, , &
Article: FSO373 | Received 21 Sep 2018, Accepted 08 Jan 2019, Published online: 07 Mar 2019

References

  • Bozzetti F, Bonfanti G, Bufalino R et al. Adequacy of margins of resection in gastrectomy for cancer. Ann. Surg. 196(6), 685–690 (1982).
  • Shin D, Park SS. Clinical importance and surgical decision-making regarding proximal resection margin for gastric cancer. World J. Gastrointest. Oncol. 5(1), 4–11 (2013).
  • Persing S, Jerome MA, James TA et al. Surgical margin reporting in breast conserving surgery: does compliance with guidelines affect re-excision and mastectomy rates? Breast. 24(5), 618–622 (2015).
  • Heiss N, Rousson V, Ifticene-Treboux A, Lehr HA, Delaloye JF. Risk factors for positive resection margins of breast cancer tumorectomy specimen following breast-conserving surgery. Horm. Mol. Biol. Clin. Investig. 32(2), (2017).
  • Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6(5), 963–968 (1953).
  • Rubin H. Fields and field cancerization: the preneoplastic origins of cancer: asymptomatic hyperplastic fields are precursors of neoplasia, and their progression to tumors can be tracked by saturation density in culture. Bioessays 33(3), 224–231 (2011).
  • Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL. Clinical implications and utility of field cancerization. Cancer Cell Int. 7, 2 (2007).
  • Jeevan R, Cromwell DA, Trivella M et al. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ (Clin. Res. Ed.) 345, e4505 (2012).
  • Jaiswal G, Jaiswal S, Kumar R, Sharma A. Field cancerization: concept and clinical implications in head and neck squamous cell carcinoma. J. Exp. Ther. Oncol. 10(3), 209–214 (2013).
  • Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 63(8), 1727–1730 (2003).
  • Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat. Rev. Cancer 11(1), 9–22 (2011).
  • Al-Ghnaniem R, Camprodon RA, Kocher HM et al. Strategy to reduce the risk of positive pancreatic resection margin at pancreatico-duodenectomy. ANZ J.. Surg. 78(4), 237–239 (2008).
  • Tsao JL, Yatabe Y, Salovaara R et al. Genetic reconstruction of individual colorectal tumor histories. Proc. Natl Acad. Sci. USA 97(3), 1236–1241 (2000).
  • Braathen LR, Morton CA, Basset-Seguin N et al. Photodynamic therapy for skin field cancerization: an international consensus. International Society for Photodynamic Therapy in Dermatology. J. Eur. Acad. Dermatol. Venereol. 26(9), 1063–1066 (2012).
  • Zeki SS, Mcdonald SA, Graham TA. Field cancerization in Barrett’s esophagus. Discov Med 12(66), 371–379 (2011).
  • Sakr RA, Poulet B, Kaufman GJ, Nos C, Clough KB. Clear margins for invasive lobular carcinoma: a surgical challenge. Eur. J. Surg. Oncol. 37(4), 350–356 (2011).
  • Gal AA, Cagle PT. The 100-year anniversary of the description of the frozen section procedure. JAMA 294(24), 3135–3137 (2005).
  • Novis DA, Zarbo RJ. Interinstitutional comparison of frozen section turnaround time. A College of American Pathologists Q-Probes study of 32868 frozen sections in 700 hospitals. Arch. Pathol. Lab. Med. 121(6), 559–567 (1997).
  • Jaafar H. Intra-operative frozen section consultation: concepts, applications and limitations. Malaysian J. Med. Sci. : MJMS 13(1), 4–12 (2006).
  • Van Den Brekel MW, Lodder WL, Stel HV, Bloemena E, Leemans CR, Van Der Waal I. Observer variation in the histopathologic assessment of extranodal tumor spread in lymph node metastases in the neck. Head Neck 34(6), 840–845 (2012).
  • Stel HV, Vroom TM, Blok P, Van Heerde P, Meijer CJ. Therapy-relevant discrepancies between diagnoses of institutional pathologists and experienced hematopathologists in the diagnosis of malignant lymphoma. Pathol. Res. Pract. 184(2), 242–247 (1989).
  • Hopton DS, Thorogood J, Clayden AD, Mackinnon D. Observer variation in histological grading of breast cancer. Eur. J. Surg. Oncol. 15(1), 21–23 (1989).
  • Desciak EB, Maloney ME. Artifacts in frozen section preparation. Dermatol. Surg. 26(5), 500–504 (2000).
  • Ishii M, Bishop JA, Gallia GL. Assessment of frozen section margin analysis during olfactory neuroblastoma surgery. Laryngoscope 127(8), 1735–1741 (2017).
  • Tworoger SS, Hankinson SE. Collection, processing, and storage of biological samples in epidemiologic studies: sex hormones, carotenoids, inflammatory markers, and proteomics as examples. Cancer Epidemiol. Biomark. Prevent. 15(9), 1578–1581 (2006).
  • Rai AJ, Gelfand CA, Haywood BC et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5(13), 3262–3277 (2005).
  • Horne GJ, Barber DF, Bruecks AK, Maung RT, Trotter MJ. Workload measurement in subspecialty dermatopathology. J. Clin. Pathol. 62(5), 435–438 (2009).
  • Szaloki T, Toth V, Tiszlavicz L, Czako L. Flat gastric polyps: results of forceps biopsy, endoscopic mucosal resection, and long-term follow-up. Scand. J. Gastroenterol. 41(9), 1105–1109 (2006).
  • Garg U, Zhang YV. Mass spectrometry in clinical laboratory: applications in therapeutic drug monitoring and toxicology. Methods Mol. Biol. (Clifton, N.J.) 1383, 1–10 (2016).
  • Ombrone D, Giocaliere E, Forni G, Malvagia S, La Marca G. Expanded newborn screening by mass spectrometry: new tests, future perspectives. Mass Spectrom. Rev. 35(1), 71–84 (2016).
  • Leonard JV, Dezateux C. Screening for inherited metabolic disease in newborn infants using tandem mass spectrometry: further assessment of performance and outcome is needed. BMJ : Br. Med. J. 324(7328), 4–5 (2002).
  • Zhou W, Petricoin EF, 3rd, Longo C. Mass Spectrometry-Based Biomarker Discovery. Methods Mol. Biol. (Clifton, N.J.) 1606, 297–311 (2017).
  • Steffen P, Kwiatkowski M, Robertson WD et al. Protein species as diagnostic markers. J. Proteomics 134, 5–18 (2016).
  • Brower V. Biomarkers: Portents of malignancy. Nature 471(7339), 19–21 (2011).
  • Rosenling T, Stoop MP, Smolinska A et al. The impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid. Clin. Chem. 57(12), 1703–1711 (2011).
  • Wiseman JM, Puolitaival SM, Takats Z, Cooks RG, Caprioli RM. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem. Int. Ed. Engl. 44(43), 7094–7097 (2005).
  • Todd PJ, Schaaff TG, Chaurand P, Caprioli RM. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J. Mass Spectrom. 36(4), 355–369 (2001).
  • Carpinteiro A, Dumitru C, Schenck M, Gulbins E. Ceramide-induced cell death in malignant cells. Cancer Lett. 264(1), 1–10 (2008).
  • Wymann MP, Schneiter R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9(2), 162–176 (2008).
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9(2), 139–150 (2008).
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41), 5497–5510 (2008).
  • Woolman M, Tata A, Dara D et al. Rapid determination of the tumour stroma ratio in squamous cell carcinomas with desorption electrospray ionization mass spectrometry (DESI-MS): a proof-of-concept demonstration. Analyst 142(17), 3250–3260 (2017).
  • Eberlin LS, Margulis K, Planell-Mendez I et al. Pancreatic cancer surgical resection margins: molecular assessment by mass spectrometry imaging. PLoS Med. 13(8), e1002108 (2016).
  • Calligaris D, Caragacianu D, Liu X et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc. Natl Acad. Sci. USA 111(42), 15184–15189 (2014).
  • Pirro V, Jarmusch AK, Alfaro CM, Hattab EM, Cohen-Gadol AA, Cooks RG. Utility of neurological smears for intrasurgical brain cancer diagnostics and tumour cell percentage by DESI-MS. Analyst 142(3), 449–454 (2017).
  • Doria ML, Mckenzie JS, Mroz A et al. Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging. Sci. Rep. 6, 39219 (2016).
  • Abbassi-Ghadi N, Veselkov K, Kumar S et al. Discrimination of lymph node metastases using desorption electrospray ionisation-mass spectrometry imaging. Chem. Commun. (Camb.) 50(28), 3661–3664 (2014).
  • Tata A, Woolman M, Ventura M et al. Rapid detection of necrosis in breast cancer with desorption electrospray ionization mass spectrometry. Sci. Rep. 6, 35374 (2016).
  • Alexander J, Gildea L, Balog J et al. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife. Surg. Endosc. 31(3), 1361–1370 (2017).
  • St John ER, Balog J, Mckenzie JS et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 19(1), 59 (2017).
  • Balog J, Sasi-Szabo L, Kinross J et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5(194), 193–194 (2013).
  • Balog J, Kumar S, Alexander J et al. In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew. Chem. (Int. Ed. English) 54(38), 11059–11062 (2015).
  • Zhang J, Rector J, Lin JQ et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 9(406), (2017).
  • Woolman M, Gribble A, Bluemke E et al. Optimized mass spectrometry analysis workflow with polarimetric guidance for ex vivo and in situ sampling of biological tissues. Sci. Rep. 7(1), 468 (2017).
  • Woolman M, Ferry I, Kuzan-Fischer CM et al. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. Chem. Sci. 8(9), 6508–6519 (2017).
  • Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooks RG. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc. Natl Acad. Sci. USA 114(26), 6700 (2017).
  • Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science (New York, N.Y.) 306(5695), 471–473 (2004).
  • Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Detection technologies. ambient mass spectrometry. Science 311(5767), 1566–1570 (2006).
  • Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG. Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem 12(14), 2129–2132 (2011).
  • Nefliu M, Smith JN, Venter A, Cooks RG. Internal energy distributions in desorption electrospray ionization (DESI). J. Am. Soc. Mass Spectrom. 19(3), 420–427 (2008).
  • Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu. Rev. Phys. Chem. 64, 481–505 (2013).
  • Jackson AU, Shum T, Sokol E, Dill A, Cooks RG. Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 399(1), 367–376 (2011).
  • Badu-Tawiah A, Cooks RG. Enhanced ion signals in desorption electrospray ionization using surfactant spray solutions. J. Am. Soc. Mass. Spectrom. 21(8), 1423–1431 (2010).
  • Manicke NE, Nefliu M, Wu C et al. Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem. 81(21), 8702–8707 (2009).
  • Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG. Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim. Biophys. Acta 1811(11), 946–960 (2011).
  • Eberlin LS, Dill AL, Golby AJ et al. Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry. Angew. Chem. (Int. Ed. English) 49(34), 5953–5956 (2010).
  • Gouw AM, Eberlin LS, Margulis K et al. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc. Natl Acad. Sci. USA 114(17), 4300–4305 (2017).
  • Wu C, Ifa DR, Manicke NE, Cooks RG. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81(18), 7618–7624 (2009).
  • Hsu CC, Chou PT, Zare RN. Imaging of proteins in tissue samples using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 87(22), 11171–11175 (2015).
  • Garza KY, Feider CL, Klein DR, Rosenberg JA, Brodbelt JS, Eberlin LS. Desorption electrospray ionization mass spectrometry imaging of proteins directly from biological tissue sections. Anal. Chem. 90(13), 7785–7789 (2018).
  • Green FM, Stokes P, Hopley C, Seah MP, Gilmore IS, O’connor G. Developing repeatable measurements for reliable analysis of molecules at surfaces using desorption electrospray ionization. Anal. Chem. 81(6), 2286–2293 (2009).
  • Bennet RV, Gamage CM, Fernandez FM. Imaging of biological tissues by desorption electrospray ionization mass spectrometry. J. Visual. Exp. : JoVE doi:10.3791/50575(77), e50575 (2013).
  • Nefliu M, Smith JN, Venter A, Cooks RG. Internal energy distributions in desorption electrospray ionization (DESI). J. Am. Soc. Mass Spectrom. 19(3), 420–427 (2008).
  • Margulis K, Chiou AS, Aasi SZ, Tibshirani RJ, Tang JY, Zare RN. Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. Proc. Natl Acad. Sci. USA 115(25), 6347–6352 (2018).
  • Yannell KE, Smith K, Alfaro CM, Jarmusch AK, Pirro V, Cooks RG. N-acetylaspartate and 2-hydroxyglutarate assessed in human brain tissue by mass spectrometry as neuronal markers of oncogenesis. Clinical chemistry 63(11), 1766–1767 (2017).
  • Abbassi-Ghadi N, Golf O, Kumar S et al. Imaging of esophageal lymph node metastases by desorption electrospray ionization mass spectrometry. Cancer Res. doi:10.1158/0008-5472.can-16-0699 (2016).
  • Santagata S, Eberlin LS, Norton I et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc. Natl Acad. Sci. USA 111(30), 11121–11126 (2014).
  • Jarmusch AK, Alfaro CM, Pirro V, Hattab EM, Cohen-Gadol AA, Cooks RG. Differential lipid profiles of normal human brain matter and gliomas by positive and negative mode desorption electrospray ionization – mass spectrometry imaging. PloS ONE 11(9), e0163180 (2016).
  • Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc. Natl Acad. Sci. USA 113(6), 1486 (2016).
  • Donnellan KA, Pitman KT, Cannon CR, Replogle WH, Simmons JD. Intraoperative laryngeal nerve monitoring during thyroidectomy. Arch. Otolaryngol. Head Neck Surg. 135(12), 1196–1198 (2009).
  • Wiseman JM, Ifa DR, Song Q, Cooks RG. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. (Int. Ed. English) 45(43), 7188–7192 (2006).
  • Eberlin LS, Norton I, Dill AL et al. Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res. 72(3), 645–654 (2012).
  • Schafer KC, Denes J, Albrecht K et al. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. (Int. Ed. English) 48(44), 8240–8242 (2009).
  • Balog J, Szaniszlo T, Schaefer KC et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 82(17), 7343–7350 (2010).
  • Balog J, Perenyi D, Guallar-Hoyas C et al. Identification of the species of origin for meat products by rapid evaporative ionization mass spectrometry. J. Agric. Food Chem. 64(23), 4793–4800 (2016).
  • Kertesz V, Van Berkel GJ. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. : JMS 45(3), 252–260 (2010).
  • Kertesz V, Ford MJ, Van Berkel GJ. Automation of a surface sampling probe/electrospray mass spectrometry system. Anal. Chem. 77(22), 7183–7189 (2005).
  • Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84(1), 141–148 (2012).
  • Pagnotti VS, Chubatyi ND, Mcewen CN. Solvent assisted inlet ionization: an ultrasensitive new liquid introduction ionization method for mass spectrometry. Anal. Chem. 83(11), 3981–3985 (2011).
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3), 247–289 (2006).
  • Roberts III TL, Lettieri JT, Ellis LB. CO2 laser resurfacing: recognizing and minimizing complications. Aesth. Surg. J. 16(2), 142–148 (1996).
  • Toodle DE. Mass spectrometry of the CO2 laser plasma. DTIC ADA104344 (1981).
  • Posthumus MA, Kistemaker PG, Meuzelaar HLC, Ten Noever De Brauw MC. Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem. 50(7), 985–991 (1978).
  • Franjic K, Cowan ML, Kraemer D, Miller RJ. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations. Opt. Express 17(25), 22937–22959 (2009).
  • Franjic K, Miller D. Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface. Phys. Chem. Chem. Phys. : PCCP 12(20), 5225–5239 (2010).
  • Kwiatkowski M, Wurlitzer M, Omidi M et al. Ultrafast extraction of proteins from tissues using desorption by impulsive vibrational excitation. Angew. Chem. (Int. Ed. English) 54(1), 285–288 (2015).
  • Bottcher A, Kucher S, Knecht R et al. Reduction of thermocoagulative injury via use of a picosecond infrared laser (PIRL) in laryngeal tissues. Eur. Arch. Otorhinolaryngol. 272(4), 941–948 (2015).
  • Amini-Nik S, Kraemer D, Cowan ML et al. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PloS One 5(9), e13053 (2010).
  • Hess M, Hildebrandt MD, Muller F et al. Picosecond infrared laser (PIRL): an ideal phonomicrosurgical laser? Eur. Arch. Otorhinolaryngol. 270(11), 2927–2937 (2013).
  • Jowett N, Wollmer W, Mlynarek AM et al. Heat generation during ablation of porcine skin with erbium: YAG laser vs a novel picosecond infrared laser. JAMA Otolaryngol. 139(8), 828–833 (2013).
  • Bottcher A, Clauditz TS, Knecht R et al. A novel tool in laryngeal surgery: preliminary results of the picosecond infrared laser. Laryngoscope 123(11), 2770–2775 (2013).
  • Jowett N, Wollmer W, Reimer R et al. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (PIRL). Otolaryngol. Head Neck Surg. 150(3), 385–393 (2014).
  • Petersen H, Tavakoli F, Kruber S et al. Comparative study of wound healing in rat skin following incision with a novel picosecond infrared laser (PIRL) and different surgical modalities. Lasers Surg. Med. 48(4), 385–391 (2016).
  • Petersen H, Gliese A, Stober Y et al. Picosecond infrared laser (PIRL) application in stapes surgery – first experience in human temporal bones. Otol. Neurotol. 39(4), e224–230 (2018).
  • Kwiatkowski M, Wurlitzer M, Krutilin A et al. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization. J. Proteomics 134, 193–202 (2016).
  • Aebersold R, Agar JN, Amster IJ et al. How many human proteoforms are there? Nat. Chem. Biol. 14(3), 206–214 (2018).
  • Ren L, Robertson WD, Reimer R et al. Towards instantaneous cellular level bio diagnosis: laser extraction and imaging of biological entities with conserved integrity and activity. Nanotechnology 26(28), 284001 (2015).
  • Tillner J, Wu V, Jones EA et al. Faster, more reproducible DESI-MS for biological tissue imaging. J. Am. Soc. Mass Spectrom. 28(10), 2090–2098 (2017).
  • Jurva U, Wikstrom HV, Weidolf L, Bruins AP. Comparison between electrochemistry/mass spectrometry and cytochrome p450-catalyzed oxidation reactions. Rapid Commun. Mass Spectrom. : RCM 17(8), 800–810 (2003).
  • Liu P, Lanekoff IT, Laskin J, Dewald HD, Chen H. Study of electrochemical reactions using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84(13), 5737–5743 (2012).
  • Mehlan J, Uschold S, Hansen NO et al. Picosecond infrared laser fiber-assisted sclerostomy (PIRL-FAST): a first proof of principle analysis. Ophthalmologe 9, 899–915 (2018).