1,695
Views
1
CrossRef citations to date
0
Altmetric
Review

Effect of Binding Immunoglobulin Protein On Induction of Regulatory B Cells With Killer Phenotype During Inflammation and Disease

&
Article: FSO379 | Received 03 Dec 2019, Accepted 14 Feb 2019, Published online: 05 Mar 2019

References

  • Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38(1), 31–40 (2000).
  • Athman JJ, Sande OJ, Groft SG et al. Mycobacterium tuberculosis membrane vesicles inhibit T cell activation. J. Immunol. 198(5), 2028–2037 (2017).
  • Raghuvanshi S, Sharma P, Singh S, Van Kaer L, Das G. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc. Natl Acad. Sci. 107(50), 21653–21658 (2010).
  • Costello AM, Kumar A, Narayan V et al. Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans. R. Soc. Trop. Med. Hyg. 86(6), 686–692 (1992).
  • de Valliere S, Abate G, Blazevic A, Heuertz RM, Hoft DF. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect. Immun. 73(10), 6711–6720 (2005).
  • Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17(6), 693–702 (2002).
  • Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136(1), 37–49 (2009).
  • Joosten SA, van Meijgaarden KE, del Nonno F et al. Patients with tuberculosis have a dysfunctional circulating B cell compartment, which normalizes following successful treatment. PLoS Pathog. 12(6), ex1005687 (2016).
  • Ma L, Liu B, Jiang Z, Jiang Y. Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin. Rheumatol. 33(2), 187–195 (2014).
  • Guo Y, Zhang X, Qin M, Wang X. Changes in peripheral CD19(+)Foxp3(+) and CD19(+)TGFβ(+) regulatory B cell populations in rheumatoid arthritis patients with interstitial lung disease. J. Thorac. Dis. 7(3), 471–477 (2015).
  • Holan V, Zajicova A, Javorkova E et al. Distinct cytokines balance the development of regulatory T cells and interleukin-10-producing regulatory B cells. Immunology 141(4), 577–586 (2014).
  • Ray A, Basu S, Williams CB, Salzman NH, Dittel BN. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J. Immunol. 188(7), 3188–3198 (2012).
  • Bénard A, Sakwa I, Schierloh P et al. B cells producing type I IFN modulate macrophage polarization in tuberculosis. Am. J. Respir. Crit. Care Med. 197(6), 801–813 (2018).
  • Cooper MA, Fehniger TA, Turner SC et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10), 3146–3151 (2001).
  • Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B cell lymphoma by expanding regulatory T cells. Cancer Res. 68(13), 5439–5449 (2008).
  • Mahic M, Yaqub S, Johansson CC, Taskén K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin e2-dependent mechanism. J. Immunol. 177(1), 246–254 (2006).
  • Wolf SD, Dittel BN, Hardardottir F, Janeway CA. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184(6), 2271–2281 (1996).
  • Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-L1hi B cells are critical regulators of humoral immunity. Nat. Commun. 6, 5997–6011 (2015).
  • Lee KM, Stott RT, Zhao G et al. TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance: immunomodulation. Eur. J. Immunol. 44(6), 1728–1736 (2014).
  • Li W, Tian X, Lu X et al. Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis. Sci. Rep. 6(1), 27479–27489 (2016). www.nature.com/articles/srep27479.
  • Carter NA, Vasconcellos R, Rosser EC et al. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol. 186(10), 5569–5579 (2011).
  • Flores-Borja F, Bosma A, Ng D et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 5(173), 173ra23–173ra23 (2013).
  • Zhang M, Zheng X, Zhang J et al. CD19+CD1d+CD5+ B cell frequencies are increased in patients with tuberculosis and suppress Th17 responses. Cell. Immunol. 274(1–2), 89–97 (2012).
  • du Plessis WJ, Keyser A, Walzl G, Loxton AG. Phenotypic analysis of peripheral B cell populations during Mycobacterium tuberculosis infection and disease. J. Inflamm. (Lond.) 13(1), (2016). http://journal-inflammation.biomedcentral.com/articles/10.1186/s12950-016-0133-4.
  • van Rensburg IC, Kleynhans L, Keyser A, Walzl G, Loxton AG. B cells with a FasL expressing regulatory phenotype are induced following successful anti-tuberculosis treatment: TB treatment induces FasL regulatory B cells. Immun. Inflamm. Dis. 5(1), 57–67 (2017).
  • Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3(10), 944–950 (2002).
  • du Plessis WJ, Kleynhans L, du Plessis N et al. The functional response of B cells to antigenic stimulation: a preliminary report of latent tuberculosis. Wilkinson KA (Ed.). PLoS ONE 11(4), e0152710 (2016).
  • Lenert P, Brummel R, Field EH, Ashman RF. TL R-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J. Clin. Immunol. 25(1), 29–40 (2005).
  • Tang Y, Jiang Q, Ou Y et al. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL. Mol. Immunol. 69, 44–51 (2016).
  • Corrigall VM, Vittecoq O, Panayi GS. Binding immunoglobulin protein-treated peripheral blood monocyte-derived dendritic cells are refractory to maturation and induce regulatory T cell development. Immunology 128(2), 218–226 (2009).
  • Yoshida K, Ochiai A, Matsuno H, Panayi GS, Corrigall VM. Binding immunoglobulin protein resolves rheumatoid synovitis: a xenogeneic study using rheumatoid arthritis synovial membrane transplants in SCID mice. Arthritis Res. Ther. 13(5), R149–R154 (2011).
  • Zhang Y, Morgan R, Chen C et al. Mammary-tumor-educated B cells acquire LAP/TGF-β and PD-L1 expression and suppress anti-tumor immune responses. Int. Immunol. 28(9), 423–433 (2016).
  • Yanaba K, Bouaziz J-D, Matsushita T, Tsubata T, Tedder TF. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182(12), 7459–7472 (2009).
  • Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507(7492), 366–370 (2014).
  • Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. (2008). www.jci.org/articles/view/36030.
  • Lindner S, Dahlke K, Sontheimer K et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 73(8), 2468–2479 (2013).
  • Kaltenmeier C, Gawanbacht A, Beyer T et al. CD4+ T cell-derived IL-21 and deprivation of CD40 signaling favor the In vivo development of granzyme B–expressing regulatory B cells in HIV patients. J. Immunol. 194(8), 3768–3777 (2015).
  • van Rensburg IC, Loxton AG. Killer (FASL regulatory) B cells are present during latent TB and are induced by BCG stimulation in participants with and without latent tuberculosis. Tuberculosis 108, 114–117 (2018).
  • Liu B-S, Cao Y, Huizinga TW, Hafler DA, Toes REM. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur. J. Immunol. 44(7), 2121–2129 (2014).
  • Noh J, Choi WS, Noh G, Lee JH. Presence of Foxp3 -expressing CD19(+)CD5(+) B cells in human peripheral blood mononuclear cells: human CD19(+)CD5(+) Foxp3 (+) regulatory B cell (Breg). Immune Netw. 10(6), 247 (2010).
  • Yoo S-A, You S, Yoon H-J et al. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. J. Exp. Med. 209(4), 871–878 (2012).
  • Choi H-H, Shin D-M, Kang G et al. Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis. FEBS Lett. 584(11), 2445–2454 (2010).
  • Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4), 373–381 (2005).
  • Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46(2), 291–300 (1986).
  • Gass JN, Gifford NM, Brewer JW. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277(50), 49047–49054 (2002).
  • Hu C-CA, Dougan SK, Winter SV, Paton AW, Paton JC, Ploegh HL. Subtilase cytotoxin cleaves newly synthesized BiP and blocks antibody secretion in B lymphocytes. J. Exp. Med. 206(11), 2429–2440 (2009).
  • Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis multiple pathways and activation of p53-up-regulated modulator of apoptosis (puma) and noxa BYp53. J. Biol. Chem. 281(11), 7260–7270 (2006).
  • Maddalo D, Neeb A, Jehle K et al. A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death. PLoS ONE 7(10), e45690 (2012).
  • Tsai Y-L, Zhang Y, Tseng C-C, Stanciauskas R, Pinaud F, Lee AS. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J. Biol. Chem. 290(13), 8049–8064 (2015).
  • Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 50(4), 1164–1171 (2004).
  • Zhang Y, Liu R, Ni M, Gill P, Lee AS. Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J. Biol. Chem. 285(20), 15065–15075 (2010).
  • Yang M, Zhang F, Qin K et al. Glucose-regulated protein 78-induced myeloid antigen-presenting cells maintained tolerogenic signature upon LPS stimulation. Front. Immunol. 7 (2016). http://journal.frontiersin.org/article/10.3389/fimmu.2016.00552/full.
  • Brownlie RJ, Myers LK, Wooley PH et al. Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4–producing regulatory T cells: a novel function for an ancient protein. Arthritis Rheum. 54(3), 854–863 (2006).
  • Lee H-Y, Kim J, Noh HJ, Kim H-P, Park S-J. Giardia lamblia binding immunoglobulin protein triggers maturation of dendritic cells via activation of TLR4-MyD88-p38 and ERK1/2 MAPKs. Parasite Immunol. 36(12), 627–646 (2014).
  • Shields AM, Klavinskis LS, Antoniou M et al. Systemic gene transfer of binding immunoglobulin protein (BiP) prevents disease progression in murine collagen-induced arthritis: lentiviral delivered BiP reduces inflammation. Clin. Exp. Immunol. 179(2), 210–219 (2015).
  • Bläss S, Union A, Raymackers J et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 44(4), 761–771 (2001).
  • Bodman-Smith MD, Corrigall VM, Kemeny DM, Panayi GS. BiP, a putative autoantigen in rheumatoid arthritis, stimulates IL-10-producing CD8-positive T cells from normal individuals. Rheumatol. Oxf. Engl. 42(5), 637–644 (2003).
  • Becker T, Hartl F-U, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70–peptide complexes. J. Cell. Biol. 158(7), 1277–1285 (2002).
  • Blair PA, Noreña LY, Flores-Borja F et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32(1), 129–40 (2010).
  • Yanaba K, Bouaziz J-D, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28(5), 639–650 (2008).
  • Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PR. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160(11), 5448–5454 (1998).
  • van Rensburg IC, Wagman C, Stanley K et al. Successful TB treatment induces B cells expressing FASL and IL5RA mRNA. Oncotarget 8(2), 2037–2043 (2017).
  • Iwata Y, Matsushita T, Horikawa M et al. Characterization of a rare IL-10-competent B cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2), 530–541 (2011).
  • Chen Y, Li C, Lu Y et al. IL-10-producing CD1dhiCD5+ regulatory B cells may play a critical role in modulating immune homeostasis in silicosis patients. Front. Immunol. 8 (2017). http://journal.frontiersin.org/article/10.3389/fimmu.2017.00110/full.
  • Fiorentino DF, Zlotnik A, Vieira P et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146(10), 3444–3451 (1991).
  • Horikawa M, Weimer ET, DiLillo DJ et al. Regulatory B cell (B10 cell) expansion during listeria infection governs innate and cellular immune responses in mice. J. Immunol. 190(3), 1158–1168 (2013).
  • Winslow GM, Yager E, Shilo K, Volk E, Reilly A, Chu FK. Antibody-mediated elimination of the obligate intracellular bacterial pathogen ehrlichia chaffeensis during active infection. Infect. Immun. 68(4), 2187–2195 (2000).
  • Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell. Biol. 2(8), 569–577 (2001).
  • Woo M, Wood C, Kwon D, Park K-HP, Fejer G, Delorme V. Mycobacterium tuberculosis infection and innate responses in a new model of lung alveolar macrophages. Front. Immunol. 9, 438 (2018).
  • Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against mycobacterium tuberculosis infection. Immunol. Rev. 264(1), 167–181 (2015).
  • Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Front. Immunol. 3 (2013). www.ncbi.nlm.nih.gov/pmc/articles/PMC3538277/.
  • Divangahi M, Chen M, Gan H et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10(8), 899–906 (2009).
  • Chen M, Gan H, Remold HG. A mechanism of virulence: virulent mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176(6), 3707–3716 (2006).
  • Jang K-J, Mano H, Aoki K et al. Mitochondrial function provides instructive signals for activation-induced B cell fates. Nat. Commun. 6, 6750 (2015).
  • Axelsson-Robertson R, Ju JH, Kim H-Y, Zumla A, Maeurer M. Mycobacterium tuberculosis-specific and MHC Class I-restricted CD8+ T cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int. J. Infect. Dis. 32, 13–22 (2015).
  • Fritz JM, Weaver TE. The BiP cochaperone ERdj4 is required for B cell development and function. PLoS ONE 9(9), e107473 (2014).