10,018
Views
47
CrossRef citations to date
0
Altmetric
Review

Probiotics: Current Landscape and Future Horizons

, , , & ORCID Icon
Article: FSO391 | Received 11 Jan 2019, Accepted 20 Mar 2019, Published online: 03 May 2019

References

  • MarchesiJR, RavelJ. The vocabulary of microbiome research: a proposal. Microbiome3(1), 31 (2015).
  • ThaissCA, ZmoraN, LevyM, ElinavE. The microbiome and innate immunity. Nature535(7610), 65–74 (2016).
  • Azcarate-PerilMA, RitterAJ, SavaianoD et al.Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl Acad. Sci. USA114(3), E367–E375 (2017).
  • FetissovSO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol.13(1), 11–25 (2017).
  • vande Wouw M, SchellekensH, DinanTG, CryanJF. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J. Nutr.147(5), 727–745 (2017).
  • JiangH, LingZ, ZhangY et al.Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun.48, 186–194 (2015).
  • MieleL, GiorgioV, AlberelliMA, DeCandia E, GasbarriniA, GriecoA. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr. Cardiol. Rep.17(12), 120 (2015).
  • Aron-WisnewskyJ, ClémentK. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol.12(3), 169–181 (2016).
  • LeungC, RiveraL, FurnessJB, AngusPW. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol.13(7), 412–425 (2016).
  • BuddenKF, GellatlySL, WoodDLA et al.Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol.15(1), 55–63 (2017).
  • WilsonTang WH, HazenSL. The gut microbiome and its role in cardiovascular diseases. Circulation.135(11), 1008–1010 (2017).
  • YuL-X, SchwabeRF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol.14(9), 527–539 (2017).
  • SchirmerM, FranzosaEA, Lloyd-PriceJ et al.Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol.3(3), 337–346 (2018).
  • vanden Nieuwboer M, vande Burgwal LHM, ClaassenE. A quantitative key-opinion-leader analysis of innovation barriers in probiotic research and development: valorisation and improving the tech transfer cycle. PharmaNutrition.4(1), 9–18 (2016).
  • ChamberlainR, LauC. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int. J. Gen. Med.9, 27 (2016).
  • GoldenbergJZ, YapC, LytvynL et al.Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst. Rev.12, CD006095 (2017).
  • NotayM, FooladN, VaughnAR, SivamaniRK. Probiotics, Prebiotics, and synbiotics for the treatment and prevention of adult dermatological diseases. Am. J. Clin. Dermatol.18(6), 721–732 (2017).
  • BercikP, ParkAJ, SinclairD et al.The anxiolytic effect of Bifidobacteriumlongum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol. Motil.23(12), 1132–1139 (2011).
  • WallaceCJK, MilevR. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry.16(1), 14 (2017).
  • LiangS, WuX, HuX, WangT, JinF. Recognizing depression from the microbiota–gut–brain axis. Int. J. Mol. Sci.19(6), 1592 (2018).
  • BinnendijkKH, RijkersGT. What is a health benefit? An evaluation of EFSA opinions on health benefits with reference to probiotics. Benef. Microbes.4(3), 223–230 (2013).
  • RijkersGT, de VosWM, BrummerR-J, MorelliL, CorthierG, MarteauP. Health benefits and health claims of probiotics: bridging science and marketing. Br. J. Nutr.106(9), 1291–1296 (2011).
  • McKenzieYA, ThompsonJ, GuliaP, LomerMCE. British Dietetic Association systematic review of systematic reviews and evidence-based practice guidelines for the use of probiotics in the management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet.29(5), 576–592 (2016).
  • MorganXC, SegataN, HuttenhowerC. Biodiversity and functional genomics in the human microbiome. Trends Genet.29(1), 51–58 (2013).
  • SenderR, FuchsS, MiloR. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol.14(8), 1–14 (2016).
  • TurroniS, RampelliS, CentanniM et al.Enterocyte-associated microbiome of the hadza hunter-gatherers. Front. Microbiol.7(3654), 1–12 (2016).
  • ClementeJC, PehrssonEC, BlaserMJ et al.The microbiome of uncontacted Amerindians. Sci. Adv.1(3), e1500183 (2015).
  • MoellerAH. The shrinking human gut microbiome. Curr. Opin. Microbiol.38, 30–35 (2017).
  • MoscaA, LeclercM, HugotJP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?Front. Microbiol.7, 455 (2016).
  • CharbonneauMR, BlantonLV, DiGiulioDB et al.A microbial perspective of human developmental biology. Nature535(7610), 48–55 (2016).
  • HooksKB, O’MalleyMA. Dysbiosis and its discontents. MBio8(5), 1–11 (2017).
  • Lloyd-PriceJ, Abu-AliG, HuttenhowerC. The healthy human microbiome. Genome Med.8(1), 51 (2016).
  • TurnbaughPJ, HamadyM, YatsunenkoT et al.A core gut microbiome in obese and lean twins. Nature457(7228), 480–484 (2009).
  • Azaïs-BraescoV, BressonJL, GuarnerF, CorthierG. Not all lactic acid bacteria are probiotics, …but some are. Br. J. Nutr.103(7), 1079 (2010).
  • DouillardFP, RibberaA, KantR et al.Comparative genomic and functional analysis of 100 lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet.9(8), e1003683 (2013).
  • QinJ, LiR, RaesJ et al.A human gut microbial gene catalogue established by metagenomic sequencing. Nature464(7285), 59–65 (2010).
  • BrowneHP, ForsterSC, AnonyeBO et al.Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature533(7604), 543–546 (2016).
  • NicholsD, CahoonN, TrakhtenbergEM et al.Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol.76(8), 2445–2450 (2010).
  • ZiesemerKA, MannAE, SankaranarayananK et al.Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci. Rep.5(1), 16498 (2015).
  • KimD, HofstaedterCE, ZhaoC et al.Optimizing methods and dodging pitfalls in microbiome research. Microbiome5(1), 52 (2017).
  • KuczynskiJ, LauberCL, WaltersWA et al.Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet.13(1), 47–58 (2012).
  • BalvočiūtėM, HusonDH. SILVA, RDP, Greengenes, NCBI and OTT – how do these taxonomies compare?BMC Genomics18(S2), 114 (2017).
  • HuseSM, YeY, ZhouY, FodorAA. A Core Human Microbiome as Viewed through 16S rRNA Sequence Clusters. PLoS ONE7(6), e34242 (2012).
  • QuinceC, WalkerAW, SimpsonJT, LomanNJ, SegataN. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol.35(9), 833–844 (2017).
  • MitchellAL, ScheremetjewM, DeniseH et al.EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res.46(D1), D726–D735 (2018).
  • HandelsmanJ, RondonMR, BradySF, ClardyJ, GoodmanRM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol.5(10), R245–R249 (1998).
  • ThomasT, GilbertJ, MeyerF. Metagenomics – a guide from sampling to data analysis. Microb. Inform. Exp.2(1), 3 (2012).
  • GosalbesMJ, DurbánA, PignatelliM et al.Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE6(3), e17447 (2011).
  • FranzosaEA, MorganXC, SegataN et al.Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA111(22), E2329–E2338 (2014).
  • Aguiar-PulidoV, HuangW, Suarez-UlloaV, CickovskiT, MatheeK, NarasimhanG. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol. Bioinforma.12(Suppl. 1), 5–16 (2016).
  • WasingerVC, CordwellSJ, Cerpa-PoljakA et al.Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis16(1), 1090–1094 (1995).
  • AndersonNL, AndersonNG. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis19(11), 1853–1861 (1998).
  • AebersoldR, MannM. Mass spectrometry-based proteomics. Nature.422(6928), 198–207 (2003).
  • VinushaKS, DeepikaK, JohnsonTS, AgrawalGK, RakwalR. Proteomic studies on lactic acid bacteria: a review. Biochem. Biophys. Reports.14, 140–148 (2018).
  • MajumderA, SultanA, Jersie-ChristensenRR et al.Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol. Proteomics.11(17), 3470–3481 (2011).
  • SicilianoRA, MazzeoMF. Molecular mechanisms of probiotic action: a proteomic perspective. Curr. Opin. Microbiol.15(3), 390–396 (2012).
  • DeAngelis M, CalassoM, CavalloN, DiCagno R, GobbettiM. Functional proteomics within the genus Lactobacillus. Proteomics.16(6), 946–962 (2016).
  • ReiffC, DeldayM, RucklidgeG et al.Balancing inflammatory, lipid, and xenobiotic signaling pathways by VSL#3, a biotherapeutic agent, in the treatment of inflammatory bowel disease. Inflamm. Bowel Dis.15(11), 1721–1736 (2009).
  • PaclikD, LohseK, WiedenmannB, DignassAU, SturmA. Galectin-2 and -4, but not Galectin-1, promote intestinal epithelial wound healing in vitro through a TGF-beta-independent mechanism. Inflamm. Bowel Dis.14(10), 1366–1372 (2008).
  • PaclikD, BerndtU, GuzyC et al.Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J. Mol. Med.86(12), 1395–1406 (2008).
  • ChenQ, RenY, LuJ et al.A novel prebiotic blend product prevents irritable bowel syndrome in mice by improving gut microbiota and modulating immune response. Nutrients9(12), 1341 (2017).
  • KolmederCA, SalojärviJ, RitariJ et al.Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS ONE11(4), e0153294 (2016).
  • HeaneyLM, DeightonK, SuzukiT. Non-targeted metabolomics in sport and exercise science. J. Sports Sci. (2017). doi: 10.1080/02640414.2017.1305122
  • NicholsonJK, LindonJC, HolmesE. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica.29(11), 1181–1189 (1999).
  • NicholsonJK, WilsonID. Understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov.2(8), 668–676 (2003).
  • BisanzJE, SeneyS, McMillanA et al.A systems biology approach investigating the effect of probiotics on the vaginal microbiome and host responses in a double blind, placebo-controlled clinical trial of post-menopausal women. PLoS One.9(8), 1–10 (2014).
  • CalvaniR, BrasiliE, PraticòG et al.Application of NMR-based metabolomics to the study of gut microbiota in obesity. J. Clin. Gastroenterol.48, S5–S7 (2014).
  • ChungH-J, SimJ-H, MinT-S, ChoiH-K. Metabolomics and lipidomics approaches in the science of probiotics: a review. J. Med. Food.21(11), 1086–1095 (2018).
  • WangZ, KlipfellE, BennettBJ et al.Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature.472(7341), 57–65 (2011).
  • KoethRA, WangZ, LevisonBS et al.Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med.19(5), 576–585 (2013).
  • JamesonE, DoxeyAC, AirsR, PurdyKJ, MurrellJC, ChenY. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems. Microb. Genomics2(9), e000080 (2016).
  • BennettBJ, VallimTQDA, WangZ et al.Trimethylamine-N-Oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab.17(1), 49–60 (2013).
  • OrganCL, OtsukaH, BhushanS et al.Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ. Hear. Fail.9(1), (2016).
  • TangWHW, WangZ, KennedyDJ et al.Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res.116(3), 448–455 (2015).
  • TangWHW, WangZ, LevisonBS et al.Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med.368(17), 1575–1584 (2013).
  • TangWHW, WangZ, FanY et al.Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol.64(18), 1908–1914 (2014).
  • SuzukiT, HeaneyLM, BhandariSS, JonesDJL, NgLL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart102(11), 841–848 (2016).
  • SuzukiT, HeaneyLM, JonesDJL, NgLL. Trimethylamine N-oxide and risk stratification after acute myocardial infarction. Clin. Chem.63(1), 420–428 (2017).
  • WangZ, RobertsAB, BuffaJA et al.Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell.163(7), 1585–1595 (2015).
  • RobertsAB, GuX, BuffaJA et al.Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med.24(9), 1407–1147 (2018).
  • BoutagyNE, NeilsonAP, OsterbergKL et al.Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity.23(12), 2357–2363 (2015).
  • MatsumotoM, KitadaY, ShimomuraY, NaitoY. Bifidobacterium animalis subsp. lactis LKM512 reduces levels of intestinal trimethylamine produced by intestinal microbiota in healthy volunteers: A double-blind, placebo-controlled study. J. Funct. Foods.36, 94–101 (2017).
  • BorgesNA, StenvinkelP, BergmanP et al.Effects of probiotic supplementation on trimethylamine-n-oxide plasma levels in hemodialysis patients: a pilot study. Probiotics Antimicrob. Proteins. (2018). doi: 10.1007/s12602-018-9411-1.
  • deFaria Barros A, BorgesNA, NakaoLS et al.Effects of probiotic supplementation on inflammatory biomarkers and uremic toxins in non-dialysis chronic kidney patients: A double-blind, randomized, placebo-controlled trial. J. Funct. Foods.46, 378–383 (2018).
  • QiuL, TaoX, XiongH, YuJ, WeiH. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct.9(8), 4299–4309 (2018).
  • TanJ, McKenzieC, PotamitisM, ThorburnAN, MackayCR, MaciaL. The role of short-chain fatty acids in health and disease. Adv. Immunol.121, 91–119 (2014).
  • Andrade-OliveiraV, AmanoMT, Correa-CostaM et al.Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol.26(8), 1877–1888 (2015).
  • LewisJD, AbreuMT. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology152(2), 398–414.e6 (2017).
  • AlKhodor S, ShatatIF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr. Nephrol.32(6), 921–931 (2017).
  • HarperA, NaghibiM, GarchaD. The role of bacteria, probiotics and diet in irritable bowel syndrome. Foods.7(2), 13 (2018).
  • VandenplasY, HuysG, DaubeG. Probiotics: an update. J. Pediatr. (Rio. J).91(1), 6–21 (2015).
  • Ríos-CoviánD, Ruas-MadiedoP, MargollesA, GueimondeM, delos Reyes-Gavilán CG, SalazarN. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol.7(2–3), 207–216 (2016).
  • AzizN, BonavidaB. Activation of natural killer cells by probiotics. For. Immunopathol. Dis. Therap.7(1–2), 41–55 (2016).
  • AzadMAK, SarkerM, WanD. Immunomodulatory effects of probiotics on cytokine profiles. Biomed Res. Int.2018, 8063647 (2018).
  • JandhyalaSM. Role of the normal gut microbiota. World J. Gastroenterol.21(29), 8787 (2015).
  • JinY, WuS, ZengZ, FuZ. Effects of environmental pollutants on gut microbiota. Environ. Pollut.222, 1–9 (2017).
  • DefoisC, RatelJ, GarraitG et al.Food chemicals disrupt human gut microbiota activity and impact intestinal homeostasis as revealed by in vitro systems. Sci. Rep.8(1), 11006 (2018).
  • RidlonJM, KangD-J, HylemonPB. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res.47(2), 241–259 (2006).
  • ParkerEA, RoyT, D’AdamoCR, WielandLS. Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition.45(2018), 125–134.e11 (2018).
  • VandenplasY. Probiotics and prebiotics in infectious gastroenteritis. Best Pract. Res. Clin. Gastroenterol.30(1), 49–53 (2016).
  • NICE. Diarrhoea – antibiotic associated [Internet]. (2018). https://cks.nice.org.uk/diarrhoea-antibiotic-associated#!scenario.
  • NICE. Clinical practice guideline. Irritable bowel syndrome in adults: diagnosis and management of irritable bowel syndrome in primary care [Internet]. (2017) www.nice.org.uk/guidance/cg61/evidence/full-guidance-pdf-196701661.
  • IshaqueSM, KhosruzzamanSM, AhmedDS, SahMP. A randomized placebo-controlled clinical trial of a multi-strain probiotic formulation (Bio-Kult®) in the management of diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol.18(1), 71 (2018).
  • WangYC, McPhersonK, MarshT, GortmakerSL, BrownM. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet378(9793), 815–825 (2011).
  • YanovskiSZ, YanovskiJA. Long-term drug treatment for obesity. JAMA311(1), 74–86 (2014).
  • ChangS, StollCRT, SongJ, VarelaJE, EagonCJ, ColditzGA. The effectiveness and risks of bariatric surgery. JAMA Surg.149(3), 275–287 (2014).
  • BorgeraasH, JohnsonLK, SkattebuJ, HertelJK, HjelmesaethJ. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes. Rev.19(2), 219–232 (2018).
  • PedretA, VallsRM, Calderón-PérezL et al.Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int. J. Obes. (2018). doi: 10.1038/s41366-018-0220-0.
  • van HemertS, BreedveldAC, RoversJMP et al.Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front. Neurol.5, 241 (2014).
  • SunJ, WangF, HuX et al.Clostridium butyricum attenuates chronic unpredictable mild stress-induced depressive-like behavior in mice via the gut-brain axis. J. Agric. Food Chem.66(31), 8415–8421 (2018).
  • AkkashehG, Kashani-PoorZ, Tajabadi-EbrahimiM et al.Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition.32(3), 315–320 (2016).
  • RaoAV, BestedAC, BeaulneTM et al.A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog.1(1), 6 (2009).
  • RomijnAR, RucklidgeJJ. Systematic review of evidence to support the theory of psychobiotics. Nutr. Rev.73(10), 675–693 (2015).
  • DaiY-J, WangH-Y, WangX-J, KayeAD, SunY-H. Potential beneficial effects of probiotics on human migraine headache: a literature review. Pain Phys.20(2), E251–E255 (2017).
  • MartamiF, ToghaM, SeifishahparM et al.The effects of a multispecies probiotic supplement on inflammatory markers and episodic and chronic migraine characteristics: A randomized double-blind controlled trial. Cephalalgia (2019). doi: 10.1177/0333102418820102.
  • GoadsbyPJ, HollandPR, Martins-OliveiraM, HoffmannJ, SchankinC, AkermanS. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev.97(2), 553–622 (2017).
  • MirandaAlatriste PV, UrbinaArronte R, GómezEspinosa CO, EspinosaCuevas M de los Á. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr. Hosp.29(3), 582–90 (2014).
  • ZhaoM, ShenC, MaL. Treatment efficacy of probiotics on atopic dermatitis, zooming in on infants: a systematic review and meta-analysis. Int. J. Dermatol.57(6), 635–641 (2018).
  • ZuccottiG, MeneghinF, AcetiA et al.Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy70(11), 1356–1371 (2015).
  • FerollaSM. Probiotics as a complementary therapeutic approach in nonalcoholic fatty liver disease. World J. Hepatol.7(3), 559 (2015).
  • IovienoA, LambiaseA, SacchettiM, StampachiacchiereB, MiceraA, BoniniS. Preliminary evidence of the efficacy of probiotic eye-drop treatment in patients with vernal keratoconjunctivitis. Graefe’s Arch. Clin. Exp. Ophthalmol.246(3), 435–441 (2008).
  • WaldorMK, TysonG, BorensteinE et al.Where Next for Microbiome Research?PLoS Biol.13(1), e1002050 (2015).