254
Views
0
CrossRef citations to date
0
Altmetric
Patent Review

Inhibition of Cancer Metabolism: a Patent Landscape

& ORCID Icon
Pages 117-138 | Received 03 Jun 2019, Accepted 22 Jul 2019, Published online: 15 Aug 2019

References

  • Warburg O . On the origin of cancer cells. Science123(3191), 309–314 (1956).
  • Lu W , PelicanoH, HuangP. Cancer metabolism: is glutamine sweeter than glucose?Cancer Cell18(3), 199–200 (2010).
  • DeBerardinis RJ , ChengT. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene29(3), 313–324 (2010).
  • Katt WP , LukeyMJ, CerioneRA. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med. Chem.9(2), 223–243 (2017).
  • Akins NS , NielsonTC, LeHV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem.18(6), 494–504 (2018).
  • Ganapathy-Kanniappan S , GeschwindJ-FH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer12(1), 152 (2013).
  • Vander Heiden MG , CantleyLC, ThompsonCB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324(5930), 1029–1033 (2009).
  • Akhenblit PJ , PagelMD. Recent advances in targeting tumor energy metabolism with tumor acidosis as a biomarker of drug efficacy. J. Cancer Sci. Ther.8(1), 20–29 (2016).
  • Momcilovic M , ShackelfordDB. Imaging cancer metabolism. Biomol. Ther. (Seoul).26(1), 81–92 (2018).
  • De Lartigue J . Hallmark tumor metabolism becomes a validated therapeutic target. Hematol. Oncol.16(1), e47–e52 (2018).
  • Muthu M , NordströmA. Current status and future prospects of clinically exploiting cancer-specific metabolism – why is tumor metabolism not more extensively translated into clinical targets and biomarkers?Int. J. Mol. Sci.20(6), 1385 (2019).
  • Mathupala SP , KoYH, PedersenPL. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin. Cancer Biol.19(1), 17–24 (2009).
  • VTV Therapeutics LLC: WO2016196890A1 (2016).
  • VTV Therapeutics LLC: WO2018009539A1 (2018).
  • Vidac Pharma Ltd.: WO2018083705A1 (2018).
  • Exelixis, Inc.: WO2012149528A1 (2012).
  • Aurelium BioPharma, Inc.: US20050026231A1 (2005).
  • Universite Paul Sabatier Toulouse III; Centre National de la Recherche Scientifique CNRS; Universite de Montreal: FR2857012A1 (2005).
  • NeOnc Technologies, Inc.: WO2018102412A1 (2018).
  • Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences: CN107814792A (2018).
  • Abbott Laboratories; Abbott Laboratories Trading Shanghai Company, Ltd.: WO2012045196A1 (2012).
  • Emory University: US20140294818A1 (2014).
  • Gwangju Institute of Science and Technology: WO2014065572A1 (2014).
  • Luengo A , GuiDY, Vander HeidenMG. Targeting metabolism for cancer therapy. Cell Chem. Biol.24(9), 1161–1180 (2017).
  • Christofk HR , Vander HeidenMG, HarrisMHet al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452(7184), 230–233 (2008).
  • Beth Israel Deaconess Medical Center, Inc.: US8877791B2 (2014).
  • Guizhou Medical University: CN107266466A (2017).
  • Liberti MV , LocasaleJW. The Warburg effect: how does it benefit cancer cells?Trends Biochem. Sci.41(3), 211–218 (2016).
  • Brunengraber H , RoeCR. Anaplerotic molecules: current and future. J. Inherit. Metab. Dis.29(2), 327–331 (2006).
  • Lukey MJ , KattWP, CerioneRA. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today22(5), 796–804 (2017).
  • Emory University: US20160228466A1 (2016).
  • Wang JB , EricksonJW, FujiRet al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell18(3), 207–219 (2010).
  • The Cancer Genome Atlas Research Network , WeinsteinJN, CollissonEAet al.The cancer genome atlas pan-cancer analysis project. Nat. Genet.45(10), 1113–1120 (2013).
  • Quaresma M , ColemanMP, RachetB. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971–2011: a population-based study. Lancet385(9974), 1206–1218 (2015).
  • Elan Pharmaceuticals LLC: US20020115698A1 (2002).
  • Agios Pharmaceuticals, Inc.: US20140142081A1 (2014).
  • Agios Pharmaceuticals, Inc.: US20140142146A1 (2014).
  • Agios Pharmaceuticals, Inc.: WO2015143340A1 (2015).
  • Calithera Biosciences, Inc.: WO2014089048 (2014).
  • Calithera Biosciences, Inc.: US20160287585A1 (2016).
  • AstraZeneca AB; Cancer Research Technology Limited: WO2015181539A1 (2015).
  • AstraZeneca AB; Cancer Research Technology Limited: WO2017089587A1 (2017).
  • Rhizen Pharmaceuticals SA: WO2015101958A2 (2015).
  • Rhizen Pharmaceuticals SA: WO2015101957A2 (2015).
  • Hangzhou Gamma Biotech Co., Ltd.: WO2017084598A1 (2017).
  • Centaurus Biopharma Co., Ltd.: CN107474024A (2017).
  • Washington University; Board of Regents, The University of Texas System: US20150273088A1 (2015).
  • Board of Regents, The University of Texas System: WO2016004404A2 (2016).
  • The University of Texas System: US20160002248A1 (2016).
  • University of Pittsburgh - of the Commonwealth System of Higher Education; Cornell University: WO2016054388A1 (2016).
  • Board of Regents, University of Texas System: WO2017004359A1 (2017).
  • Huang Q , StalneckerC, ZhangCet al. Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. J. Biol. Chem.293(10), 3535–3545 (2018).
  • Gross MI , DemoSD, DennisonJBet al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther.13(4), 890–901 (2014).
  • Robinson MM , McBryantSJ, TsukamotoTet al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J.406(3), 407–414 (2007).
  • Xu X , MengY, LiLet al. Overview of the development of glutaminase inhibitors: achievements and future directions. J. Med. Chem.62(3), 1096–1115 (2019).
  • Wu C , ChenL, JinS, LiH. Glutaminase inhibitors: a patent review. Expert Opin. Ther. Pat.28(11), 823–835 (2018).
  • Zimmermann SC , DuvallB, TsukamotoT. Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J. Med. Chem.62(1), 46–59 (2019).
  • Tenora L , AltJ, DashRPet al. Tumor-targeted delivery of 6-diazo-5-oxo-l-norleucine (DON) using substituted acetylated lysine prodrugs. J. Med. Chem.62(7), 3524–3538 (2019).
  • Johns Hopkins University: US20180221395A1 (2018).
  • Katt WP , RamachandranS, EricksonJW, CerioneRA. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol. Cancer Ther.11(6), 1269–1278 (2012).
  • Gao M , MonianP, QuadriN, RamasamyR, JiangX. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell59(2), 298–308 (2016).
  • Cornell University; Ithaca College: WO2016090350A1 (2016).
  • Dongguk University Industry-Academic Cooperation Foundation; Korea Research Institute of Bioscience and Biotechnology: WO2018164549A1 (2018).
  • Reitman ZJ , YanH. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl Cancer Inst.102(13), 932–941 (2010).
  • Waitkus MS , DiplasBH, YanH. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell34(2), 186–195 (2018).
  • Yen KE , BittingerMA, SuSM, FantinVR. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene29, 6409 (2010).
  • DeBerardinis RJ , ChandelNS. Fundamentals of cancer metabolism. Sci. Adv.2(5), e1600200 (2016).
  • Chen J , YangJ, CaoP. The evolving landscape in the development of isocitrate dehydrogenase mutant inhibitors. Mini Rev. Med. Chem.16(16), 1344–1358 (2016).
  • Ma T , ZouF, PuschS, XuY, von DeimlingA, ZhaX. Inhibitors of mutant isocitrate dehydrogenases 1 and 2 (mIDH1/2): an update and perspective. J. Med. Chem.61(20), 8981–9003 (2018).
  • Celgene Corporation; Agios Pharmaceuticals, Inc.: WO2017146794A1 (2017).
  • Agios Pharmaceuticals, Inc.: WO2015006591A1 (2015).
  • Agios Pharmaceuticals, Inc.: WO2014062511A1 (2014).
  • Agios Pharmaceuticals, Inc.: WO2015006592A1 (2015).
  • Forma Therapeutics, Inc.: WO2016171755A1 (2016).
  • Forma Therapeutics, Inc.: WO2016044789A1 (2016).
  • Forma Therapeutics, Inc.: WO2016044787A1 (2016).
  • Forma Therapeutics, Inc.: WO2016044782A1 (2016).
  • Forma Therapeutics, Inc.: WO2016171756A1 (2016).
  • FORMA Therapeutics, Inc.: WO2016044781A1 (2016).
  • Eli Lilly and Company: WO2018111707A1 (2018).
  • United States Dept. of Health and Human Services; The University of North Carolina at Chapel Hill: WO2017223202A1 (2017).
  • Jiangsu Provincial Institute of Traditional Chinese Medicine: CN106810512A (2017).
  • Merck Sharp & Dohme Corp. ; YuYang. WO2016089830A1 (2016).
  • Neuform Pharmaceuticals, Inc.: WO2017069878A1 (2017).
  • Daiichi Sankyo Company, Limited; National Cancer Center: WO2016052697A1 (2016).
  • Bayer Pharma Aktiengesellschaft: WO2017016992A1 (2017).
  • Medshine Discovery Inc.: WO2019015672A1 (2019).
  • Nanjing Sanhome Pharmaceutical Co., Ltd.: WO2018014852A1 (2018).
  • Shanghai Shipu Biotechnology Co., Ltd.: CN108403696A (2018).
  • Shanghai Meton Pharmaceutical Co., Ltd.: WO2018095344A1 (2018).
  • Sichuan University: CN107382840A (2017).
  • Isocure Biosciences Inc.: WO2019023165A1 (2019).
  • Isocure Biosciences Inc.: WO2018071404A1 (2018).
  • Isocure Biosciences Inc.: WO2018118793A1 (2018).
  • Chia Tai Tianqing Pharmaceutical Group Co., Ltd.; Lianyungang Runzhong Pharmaceutical Co., Ltd.; Centaurus Biopharma Co., Ltd.: WO2017016513A1 (2017).
  • Chia Tai Tianqing Pharmaceutical Group Co., Ltd.; Lianyungang Runzhong Pharmaceutical Co., Ltd.; Centaurus Biopharma Co., Ltd.: WO2017162156A1 (2017).
  • Chia Tai Tianqing Pharmaceutical Group Co., Ltd.; Lianyungang Runzhong Pharmaceutical Co., Ltd.; Centaurus Biopharma Co., Ltd.: WO2017162157A1 (2017).
  • Okoye-Okafor UC , BartholdyB, CartierJet al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat. Chem. Biol.11, 878 (2015).
  • Popovici-Muller J , LemieuxRM, ArtinEet al. Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med. Chem. Lett.9(4), 300–305 (2018).
  • Szablewski L . Expression of glucose transporters in cancers. Biochim. Biophys. Acta - Rev. Cancer1835(2), 164–169 (2013).
  • Macheda ML , RogersS, BestJD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol.202(3), 654–662 (2005).
  • Gatenby RA , GilliesRJ. Why do cancers have high aerobic glycolysis?Nat. Rev. Cancer4, 891 (2004).
  • STC.UNM; Rosalind Franklin University: WO2016201214A1 (2016).
  • Emory University; Northwestern University; Washington University: WO2018125968A1 (2018).
  • The Johns Hopkins University: WO2017136731A1 (2017).
  • Ohio State Innovation Foundation: US9174951B2 (2015).
  • Bayer Pharma Aktiengesellschaft: WO2016202898A1 (2016).
  • Bayer Pharma Aktiengesellschaft: WO2016202935A1 (2016).
  • Fuchs BC , BodeBP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime?Semin. Cancer Biol.15(4), 254–266 (2005).
  • Yanagisawa N , IchinoeM, MikamiTet al. High expression of L-type amino acid transporter 1 (LAT1) predicts poor prognosis in pancreatic ductal adenocarcinomas. J. Clin. Pathol.65(11), 1019–1023 (2012).
  • Kaira K , OriuchiN, ImaiHet al. Prognostic significance of L-type amino acid transporter 1 expression in resectable stage I–III nonsmall cell lung cancer. Br. J. Cancer98, 742 (2008).
  • Wang Q , HardieR-A, HoyAJet al. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J. Pathol.236(3), 278–289 (2015).
  • Toyoda M , KairaK, OhshimaYet al. Prognostic significance of amino-acid transporter expression (LAT1, ASCT2, and xCT) in surgically resected tongue cancer. Br. J. Cancer110, 2506 (2014).
  • Osaka University: WO2014112646A1 (2014).
  • The University of Montana: US20150056138A1 (2015).
  • Vanderbilt University: WO2018107173A1 (2018).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Tripathi SC , FahrmannJF, VykoukalJV, DennisonJB, HanashSM. Targeting metabolic vulnerabilities of cancer: small molecule inhibitors in clinic. Cancer Rep.2(1), e1131 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.