216
Views
0
CrossRef citations to date
0
Altmetric
Patent Review

Recent Patents on Therapeutic Activities of Xanthohumol: a Prenylated Chalconoid From Hops (Humulus Lupulus L.)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 37-49 | Received 28 Aug 2020, Accepted 04 Dec 2020, Published online: 15 Jan 2021

References

  • Haseleu G , IntelmannD , HofmannT. Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of Hop (Humulus lupulus L.) upon wort boiling. Food Chem.116, 71–81 (2009).
  • Ocvirk M , OgrincN , KosirIJ. Determination of the geographical and botanical origin of hops (Humulus lupulus L.) using stable isotopes of C, N, and S. J. Agri. Food Chem.66(8), 2021–2026 (2018).
  • Intelmann D , KummerloweG , HaseleuGet al. Structures of storage-induced transformation products of the beer’s bitter principles, revealed by sophisticated NMR spectroscopic and LC-MS techniques. Chem. Eur. J.15, 13047–13058 (2009).
  • Eyres G , DufourJP. Hop essential oil: analysis, chemical composition and odor characteristics. Beer Health Dis. Prevent.239–254 (2009).
  • Hieronymus S . For the Love of Hops: The Practical Guide to Aroma, Bitterness and the Culture of Hops.Brewers Publications, CA, USA (2012).
  • Flythe MD , KaganIA , WangYet al. Hops (Humulus lupulus L.) bitter acids: modulation of rumen fermentation and potential as an alternative growth promoter. Front. Vet. Sci.4, 131 (2017).
  • Dresel M , VogtC , DunkelAet al. The bitter chemodiversity of hops (Humulus lupulus L.). J. Agri. Food Chem.4(41), 7789–7799 (2016).
  • Austin MB , NoelJP. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep.20, 79–110 (2003).
  • Abe I , MoritaH. Cheminform abstract: structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat. Prod. Rep.27(6), 809–838 (2010).
  • Frolich S , SchubertC , BienzleUet al. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J. Antimicrob. Chemother.55(6), 883–887 (2005).
  • Possemiers S , VerstraeteW , DeWiele TV. Estrogenicity of beer: the role of intestinal bacteria in the activation of the beer flavonoid isoxanthohumol. Beer Health Dis. Prevent.523–539 (2009).
  • Proestos C , KomaitisM. Antioxidant capacity of hops. Beer Health Dis. Prevent.467–474 (2009).
  • Deeb D , GaoX , JiangHet al. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res.30, 3333–3339 (2010).
  • Rizvi S , GoresGJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology145, 1215–1229 (2013).
  • Jiang CH , SunTL , XiangDXet al. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol.9, 530 (2018).
  • Reitman ZJ , WinklerF , EliaAEH. New directions in the treatment of glioblastoma. Semin. Neurol.38, 50–61 (2018).
  • Zanoli P , ZavattiM. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol.116(3), 383–396 (2008).
  • Zanoli P , ZavattiM. Neuropharmacological activity of Humulus lupulus L. Beer Health Dis. Prevent.549–556 (2009).
  • Aronson JK . Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions (16th Edition).AronsonJK (Ed.). Elsevier Science, USA, 7674 (2015).
  • Bartmańska A , Wałecka-ZacharskaE , TroninaTet al. Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules23, 2059 (2018).
  • Stevens JF , PageJE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health. Phytochemistry65(10), 1317–1330 (2004).
  • Lupinacci E , MeijerinkJ , VinckenJPet al. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-α release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J. Agri. Food Chem.57(16), 7274–7281 (2009).
  • Lee YM , HsiehKH , LuWJet al. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), prevents platelet activation in human platelets. Evid. Based Complement. Alternat. Med.2, 10 (2012).
  • Yasukawa K , TakeuchiM , TakidoM. Humulon, a bitter in the hop, inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology52(2), 156–158 (1995).
  • Wesolowska O , GasiorowskaJ , PetrusJet al. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Biochem. Biophys. Acta1838, 173–184 (2014).
  • Langezaal CR , ChandraA , SchefferJJ. Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars. Pharm. Weekbl. Sci.14(6), 353–356 (1992).
  • Simpson WJ , SmithAR. Factors affecting antibacterial activity of hop compounds and their derivatives. J. Appl. Bacteriol.72(4), 327–334 (1992).
  • Sheu JR , LeeCR , LinCet al. Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets. J. Thromb. Haemost.83(5), 777–784 (2000).
  • Stevens JF , MirandaCL , FreiBet al. Inhibition of peroxynitrite-mediated LDL oxidation by prenylated flavonoids: the alpha,beta-unsaturated keto functionality of 2′-hydroxychalcones as a novel antioxidant pharmacophore. Chem. Res. Toxicol.16(10), 1277–1286 (2003).
  • Schempp H , VogelS , HückelhovenRet al. Re-evaluation of superoxide scavenging capacity of xanthohumol. Free Radic. Res.44, 1435–1444 (2010).
  • Hirata H , YiminSegawa Set al. Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS ONE7, e49415 (2012).
  • Henderson MC , MirandaCL , StevensJFet al. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica30(3), 235–251 (2000).
  • Mannering GJ , ShoemanJA , ShoemanDW. Effects of colupulone, a component of hops and brewers yeast, and chromium on glucose tolerance and hepatic cytochrome P450 in nondiabetic and spontaneously diabetic mice. Biochem. Biophys. Res. Commun.200(3), 1455–1462 (1994).
  • Mannering GJ , ShoemanJA. Murine cytochrome P4503A is induced by 2-methyl-3-buten-2-ol, 3-methyl- 1-pentyn-3-ol (meparfynol), and tert-amyl alcohol. Xenobiotica26(5), 487–493 (1996).
  • Guo J , NikolicD , ChadwickLRet al. Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus L.). Drug Metab. Dispos.34, 1152–1159 (2006).
  • Miranda CL , YangYH , HendersonMCet al. Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab. Dispos.28(11), 1297–1302 (2000).
  • Miura Y , HosonoM , OyamadaCet al. Dietary isohumulones, the bitter components of beer, raise plasma HDL cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARa activations in C57BL/6 mice. Br. J. Nutr.93, 559–567 (2005).
  • Hänsel R , WohlfartR , CoperH. Sedative-hypnotic compounds in the exhalation of hops, II. Z. Naturforsch.35(11-12), 1096–1097 (1980).
  • Park SH , SimYB , KangYJet al. Hop extract produces antinociception by acting on opioid system in mice. Korean J. Physiol. Pharmacol.16(3), 187–192 (2012).
  • Hänsel R , WohlfartR , SchmidtH. The sedative-hypnotic principle of hops. 3. Communication: contents of 2-methyl-3-butene-2-ol in hops and hop preparations. Planta Med.45, 224–228 (1982).
  • De Keukeleire J , OomsG , HeyerickAet al. Formation and accumulation of α-acids, β-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.). J. Agri. Food Chem.16, 4436–4441 (2003).
  • De Keukeleire J , JanssensI , HeyerickAet al. Relevance of organic farming and effect of climatological conditions on the formation of α-acids, β-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.). J. Agr. Food Chem.55, 61–66 (2007).
  • Zhang X , LiX , LiuNet al. The anticonvulsant effects of baldrinal on pilocarpine-induced convulsion in adult male mice. Molecules24(8), 1617 (2019).
  • Brodziak-Jarosz L , FujikawaY , Pastor-FloresDet al. A click chemistry approach identifies target proteins of xanthohumol. Mol. Nutr. Food Res.60, 737–748 (2016).
  • Magalhaes PJ , CarvalhoDO , CruzJMet al. Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Nat. Prod. Commun.4, 591–610 (2009).
  • Nuti E , BassaniB , CamodecaCet al. Synthesis and antiangiogenic activity study of new hop chalcone xanthohumol analogues. Eur. J. Med. Chem.138, 890–899 (2017).
  • Biendl M , PinzlC. Hops and health. In: Effects – Efficacy of Individual Hop Components.BiendlM, PinzlC ( Eds). German Hop Museum, Wolnzach, Germany, 49–76 (2008).
  • Yajima H , IkeshimaE , ShirakiMet al. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J. Biol. Chem.279(32), 33456–33462 (2004).
  • Chadwick LR , NikolicD , BurdetteJEet al. Estrogens and congeners from spent hops (Humulus lupulus). J. Nat. Prod.67(12), 2024–2032 (2004).
  • Chadwick LR , PauliGF. Farnsworth. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine13(1-2), 119–131 (2006).
  • van Breemen RB , YuanY , BanuvarSet al. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol. Nutr. Food Res.58, 1962–1969 (2014).
  • Liu J , BurdetteJE , XuHet al. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J. Agri. Food Chem.49(5), 2472–2479 (2001).
  • Logan IE , MirandaCL , LowryMBet al. Antiproliferative and cytotoxic activity of xanthohumol and its non-estrogenic derivatives in colon and hepatocellular carcinoma cell lines. Int. J. Mol. Sci.20, 1203 (2019).
  • Possemiers S , BolcaS , GrootaertCet al. The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J. Nutr.136(7), 1862–1867 (2006).
  • Possemiers S , RabotS , EspinJCet al. Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J. Nutr.138, 1310–1316 (2008).
  • Stulikova K , KarabinM , NesporJet al. Therapeutic perspectives of 8-prenylnaringenin, a potent phytoestrogen from hops. Molecules23(3), 660 (2018).
  • Paraiso IL , PlagmannLS , YangLet al. Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium Eubacterium ramulus. Mol. Nutr. Food Res.63, e1800923 (2019).
  • Franco L , SanchezC , BravoRet al. The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung.99(2), 133–139 (2012).
  • Vonderheid-Guth B , TodorovaA , BrattstromAet al. Pharmacodynamic effects of valerian and hops extract combination (Ze 91019) on the quantitative-topographical EEG in healthy volunteers. Eur. J. Med. Res.5(4), 139–144 (2000).
  • Liu M , HansenPE , WangGet al. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules20, 754–779 (2015).
  • Lecce G , MeduriG , AncelinMet al. Presence of estrogen receptor beta in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J. Clin. Endocrinol. Metab.86, 1379–1386 (2001).
  • Schellenberg R , SauerS , AbourashedEA. The fixed combination of valerian and hops (Ze91019) acts via a central adenosine mechanism. Planta Med.70(7), 594–597 (2004).
  • Schiller H , ForsterA , VonhoffCet al. Sedating effects of Humulus lupulus L. extracts. Phytomedicine13(8), 535–541 (2006).
  • Dimpfel W , PischelI , LehnfeldR. Effects of lozenge containing lavender oil, extracts from hops, lemon balm and oat on electrical brain activity of volunteers. Eur. J. Med. Res.9(9), 423–431 (2004).
  • Wohlfart R , WurmG , HanselRet al. Detection of sedative-hypnotic active ingredients in hops. 5. Degradation of bitter acids to 2-methyl-3-buten-2-ol, a hop constituent with sedative-hypnotic activity. Arch. Pharm. (Weinheim)316(2), 132–137 (1983).
  • Legette L , MaL , ReedRLet al. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res.56, 466–474 (2012).
  • Kac J , PlazarJ , MlinaričAet al. Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine15, 216–220 (2008).
  • Salehi B , UpadhyayS , ErdoganOIet al. Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules9, 738 (2019).
  • Aggarwal V , KashyapD , SakKet al. Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int. J. Mol. Sci.20(3), 656 (2019).
  • Kashyap D , SharmaA , SakKet al. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci.194, 75–87 (2018).
  • Tuli HS , TuorkeyMJ , ThakralFet al. Molecular mechanisms of action of genistein in cancer: recent advances. Front. Pharmacol.10, 1336 (2019).
  • Kashyap D , SharmaA , TuliHSet al. Molecular targets of celastrol in cancer: recent trends and advancements. Crit. Rev. Oncol. Hematol.128, 70–81 (2018).
  • Sharma A , GhaniA , SakKet al. Probing into therapeutic anti-cancer potential of apigenin: recent trends and future directions. Recent Pat. Inflamm. Allergy Drug Discov.13(2), 124–133 (2019).
  • Chaudhary A , JaswalVS , ChoudharySet al. Ferulic acid: a promising therapeutic phytochemical and recent patents advances. Recent Pat. Inflamm. Allergy Drug Discov.13(2), 115–123 (2019).
  • Yadav P , JaiswalV , SharmaAet al. Celastrol as a pentacyclic triterpenoid with chemopreventive properties. Pharm. Pat. Anal.7(4), 155–167 (2018).
  • Tuli HS , KashyapD , SharmaAK , SandhuSS. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci.135, 147–157 (2015).
  • Kashyap D , TuliHS , SharmaAK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci.146, 201–213 (2016).
  • Lee IS , LimJ , GalJet al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int.58(2), 153–160 (2011).
  • Weiskirchen R , MahliA , WeiskirchenSet al. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol.6, 140 (2015).
  • Luzak B , KassassirH , RójE , StanczykL , WatalaC , GolanskiJ. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem.123, 54–60 (2017).
  • Liu W , LiW , LiuH , YuX. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int. J. Biol. Sci.15, 2497–2508 (2019)
  • Mishra AP , SalehiB , Sharifi-RadMet al. . Programmed cell death, from a cancer perspective: an overview. Mol. Diagn. Ther.22(3), 281–295 (2018).
  • Sławińska-Brych A , ZdzisińskaB , CzerwonkaAet al. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim. Biophys. Acta1863(11), 129408 (2019).
  • Kang Y , ParkMA , HeoSWet al. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim. Biophys. Acta1830(3), 2638–2648 (2013).
  • Saito K , MatsuoY , ImafujiHet al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci.109(1), 132–140 (2018).
  • Viola K , KopfS , RarovaLet al. Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch. Toxicol.87(7), 1301–1312 (2013).
  • Lee IS , LimJ , GalJet al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int.58(2), 153–160 (2011).
  • Gupta H , KumarS , RoySK , GaudRS. Patent protection strategies. J. Pharm. Bioall. Sci.2, 2–7 (2010)
  • DiMasi JA , HansenRW , GrabowskiHG. The price of innovation: new estimates of drug development costs. J. Health Econ.22(2), 151–185 (2003).
  • Grubb PW . Patents for chemicals, pharmaceuticals and biotechnology: Fundamentals of Global Law, Practice and Strategy (2nd Edition).Oxford University Press, London, UK (1999).
  • Gersten DM . The quest for market exclusivity in biotechnology: navigating the patent minefield. NeuroRx2(4), 572–578 (2005).
  • Miranda CL , StevensJF , IvanovVet al. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agri. Food Chem.48(9), 3876–3884 (2000).
  • Gerhäuser C . Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res.49(9), 827–831 (2005).
  • Legette LL , LunaAY , ReedRLet al. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry91, 236–241 (2013).
  • Dorn C , MassingerS , WuzikAet al. Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury. Exp. Mol. Pathol.94(1), 10–16 (2013).
  • Erkkola R , VervarckeS , VansteelandtSet al. A randomized, double-blind, placebo-controlled, cross-over pilot study on the use of a standardized hop extract to alleviate menopausal discomforts. Phytomedicine17(6), 389–396 (2010).
  • Ambrož M , LněničkováK , MatouškováPet al. Antiproliferative effects of hop-derived prenylflavonoids and their influence on the efficacy of oxaliplatine, 5-fluorouracil and irinotecan in human colorectal C cells. Nutrients11(4), 879 (2019).
  • Gerhäuser C . Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer41(13), 1941–1954 (2005).
  • Jia Q , JiaoP , YimamMet al. : US20200206292A1 (2020).
  • Brownell LA , HongMCMF , HyunEJet al. : AU2019201188A1 (2019).
  • Brownell LA , ChuM , HongMFet al. : AU2020201457A1 (2020).
  • Xiaolan W , ChenY , MingL: CN110754664A (2019).
  • Yuhua T : 111195334A (2020).
  • Wang L , ZhangJ: 111281851A (2019).
  • Yamaguchi N , Satoh-YamaguchiK , OnoM. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine16, 369–376 (2009).
  • Fukizawa S , TakagiR: WO2020116382A1 (2019).
  • Fukizawa S : WO2020116381A1 (2019).
  • Fukizawa S , RisaY , Takagiet al. : WO2020116383A1 (2019).
  • Adnan MMM , PolisettiDR , KassisJNet al. : US20200148673A1 (2020).
  • Werner-Backachim W , WunderrichZ: JP2020090501A (2019).
  • Hamid R , NoelS , MariaNet al. : US20200120909A1 (2019).
  • Young CL , SuYY , SuHYet al. : WO2020106084A1 (2019).
  • Marcel B , ThérèseD: WO2020094767A1 (2019).
  • Ingo L , JohannesG , VeraPet al. : WO2020084105A2 (2019).
  • Ivan G : WO2020086820A1 (2019).
  • Alain D , Baron , NigelRA , Beeleyet al. : AU2019253780A1 (2019).
  • Durham L : JP2020059711A (2019).
  • Jiang P , LiuX , BaiJet al. : 110613706A (2019).
  • Akihiro TM , YukoT , Yoshinagaet al. : WO2020067453A1 (2019).
  • Chen Z , SangF , KongLet al. : 110590520A (2019).
  • Otis CA : US20200016131A1 (2019).
  • Yi R : US20200165608A1 (2019).
  • Kenwaljit SB : WO2020061584A1 (2019).
  • Bjoern CK : US20190381023A1 (2019).
  • Nikhat C , JenniferJR: WO2020033796A1 (2019).
  • Shinya MF , KenichiY , Wakabayashi: WO2020031957A1 (2019).
  • Shinya FY , NonakaM , Yamashita: WO2020031952A1 (2019).
  • Junki Y , KusotaroT: WO2020031961A1 (2019).
  • Cong YJ , ChunpengZ , XueqiangZhet al. : 110251436A (2019).
  • Peter S , TalynS , PaulDet al. : WO2020027665A1 (2019).
  • Junmo Y , ParkY , KimYet al. : KR102074614B1 (2019).
  • Geoffrey A , VonM , JaredSet al. : US20200093851A1 (2019).
  • Jeffrey ES : WO2019210073A1 (2019).
  • Kim JSS , DoK: KR102015854B1 (2019).
  • Rio MJD , JuliaCW , Lopez-RiosLet al. : US20190216872A1 (2019).
  • Gokaraju GR , GokarajuVKRR , GolakotiRRGTet al. : WO2019171397A1 (2019).
  • Baillie RF , DavisPF , TinteI , TanST: US20200041521A1 (2019).
  • Yongbo Z , PingL , XiaoshuangL: 109589331A (2019).
  • Behnam D : WO2020011402A1 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.