111
Views
0
CrossRef citations to date
0
Altmetric
Review

Neoantigen activation, Protein Translocation and Targeted Drug Delivery in Combination With Radiotherapy

&
Pages 377-385 | Received 24 Jan 2016, Accepted 12 Apr 2016, Published online: 02 Jun 2016

References

  • Thakor AS Gambhir SS . Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin.63 (6), 395–418 (2013).
  • Corso CD Ali AN Diaz R . Radiation-induced tumor neoantigens: imaging and therapeutic implications. Am. J. Cancer Res.1 (3), 390–412 (2011).
  • Belka C Nieder C Molls M . Biological basis of combined radio- and chemotherapy. In : Multimodal Concepts for Integration of Cytotoxic Drugs. BrownJMMehtaMNiederC ( Eds). Springer, Berlin, Heidelberg, 3–17 (2006).
  • Seiwert TY Salama JK Vokes EE . The concurrent chemoradiation paradigmgeneral principles. Nat. Clin. Pract. Oncol.4 (2), 86–100 (2007).
  • Pabla N Dong Z . Curtailing side effects in chemotherapy: a tale of PKCδ in cisplatin treatment. Oncotarget3 (1), 107–111 (2012).
  • Begg AC Stewart FA Vens C . Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer11 (4), 239–253 (2011).
  • Dicheva BM Koning GA . Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin. Drug Deliv.11 (1), 83–100 (2014).
  • Ranjan A Jacobs GC Woods DL et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J. Control. Rel.158 (3), 487–494 (2012).
  • Manzoor AA Lindner LH Landon CD et al. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res.72 (21), 5566–5575 (2012).
  • Lakshmanan S Gupta GK Avci P et al. Physical energy for drug delivery; poration, concentration and activation. Adv. Drug Deliv. Rev.71, 98–114 (2014).
  • Halperin EC Perez CA Brady LW . Perez And Brady's Principles And Practice Of Radiation Oncology. Wolters Kluwer Health/Lippincott Williams & Wilkins, PA, USA (2008).
  • Han Z Hariri G Hallahan D . Radiotherapy and tumor-targeted drug delivery. In : Multimodal Concepts for Integration of Cytotoxic Drugs. BrownJMMehtaMNiederC ( Eds). Springer, Berlin, Heidelberg, 151–162 (2006).
  • Geng L Osusky K Konjeti S Fu A Hallahan D . Radiation-guided drug delivery to tumor blood vessels results in improved tumor growth delay. J. Control. Release99 (3), 369–381 (2004).
  • Hallahan DE Geng L Cmelak AJ et al. Targeting drug delivery to radiation-induced neoantigens in tumor microvasculature. J. Control. Rel.74 (1–3), 183–191 (2001).
  • Heckmann M Douwes K Peter R Degitz K . Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation. Exp. Cell Res.238 (1), 148–154 (1998).
  • Hallahan D Geng L Qu S et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell3 (1), 63–74 (2003).
  • Kiani MF Yuan H Chen X Smith L Gaber MW Goetz DJ . Targeting microparticles to select tissue via radiation-induced upregulation of endothelial cell adhesion molecules. Pharm. Res.19 (9), 1317–1322 (2002).
  • Pattillo CB Donelson FJ Donelson FJ et al. Radiation-guided targeting of combretastatin encapsulated immunoliposomes to mammary tumors. Pharm. Res.26 (5), 1093–1100 (2009).
  • Hallahan DE Staba-Hogan MJ Virudachalam S Kolchinsky A . x-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res.58 (22), 5216–5220 (1998).
  • Lee BS Cho YW Kim GC et al. Induced phenotype targeted therapy: radiation-induced apoptosis-targeted chemotherapy. J. Natl Cancer Inst.107 (2), dju403 (2014).
  • Lee HK Xiang C Cazacu S et al. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro Oncol.10 (3), 236–243 (2008).
  • Han Z Fu A Wang H et al. Noninvasive assessment of cancer response to therapy. Nat. Med.14 (3), 343–349 (2008).
  • Wang H Yan H Fu A Han M Hallahan D Han Z . TIP-1 translocation onto the cell plasma membrane is a molecular biomarker of tumor response to ionizing radiation. PLoS ONE5 (8), e12051 (2010).
  • Hariri G Edwards AD Merrill TB Greenbaum JM Van Der Ende AE Harth E . Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked ‘nanosponge’ network for lung cancer chemotherapy. Mol. Pharm.11 (1), 265–275 (2014).
  • Ferraro DJ Bhave SR Kotipatruni RP et al. High-throughput identification of putative receptors for cancer-binding peptides using biopanning and microarray analysis. Integr. Biol. (Camb.)5 (2), 342–350 (2013).
  • Muhoro L Yan H Hunn J Thotala D Ferraro D Hallahan D . Characterization and targeting of radiation-inducible neoantigens in multiple cancer types. Presented at : AACR Annual Meeting 2014. San Diego, CA, USA, 5–9 April 2014 ( Abstract 4597).
  • Lowery A Onishko H Hallahan DE Han Z . Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors. J. Control. Rel.150 (1), 117–124 (2011).
  • Hariri G Yan H Wang H Han Z Hallahan DE . Radiation-guided drug delivery to mouse models of lung cancer. Clin. Cancer Res.16 (20), 4968–4977 (2010).
  • Lowery A Onishko H Hallahan DE Han Z . Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors. J. Control. Rel.150 (1), 117–124 (2011).
  • Yang M Lai SK Wang YY et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. Engl.50 (11), 2597–2600 (2011).
  • Juweid M Neumann R Paik C et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res.52 (19), 5144–5153 (1992).
  • Giustini AJ Petryk AA Hoopes PJ . Ionizing radiation increases systemic nanoparticle tumor accumulation. Nanomedicine8 (6), 818–821 (2012).
  • Znati CA Rosenstein M Boucher Y Epperly MW Bloomer WD Jain RK . Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Cancer Res.56 (5), 964–968 (1996).
  • Weissig V Pettinger TK Murdock N . Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine9, 4357–4373 (2014).
  • Ranson MR Carmichael J O'byrne K Stewart S Smith D Howell A . Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter Phase II trial. J. Clin. Oncol.15 (10), 3185–3191 (1997).
  • O'brien ME Wigler N Inbar M et al. Reduced cardiotoxicity and comparable efficacy in a Phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol.15 (3), 440–449 (2004).
  • Gradishar WJ Tjulandin S Davidson N et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol.23 (31), 7794–7803 (2005).
  • Davis ME Chen ZG Shin DM . Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7 (9), 771–782 (2008).
  • Wang AZ Tepper JE . Nanotechnology in radiation oncology. J. Clin. Oncol.32 (26), 2879–2885 (2014).
  • Miller SM Wang AZ . Nanomedicine in chemoradiation. Ther. Deliv.4 (2), 239–250 (2013).
  • Lammers T Subr V Peschke P et al. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br. J. Cancer99 (6), 900–910 (2008).
  • Werner ME Cummings ND Sethi M et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.86 (3), 463–468 (2013).
  • Koukourakis MI Romanidis K Froudarakis M et al. Concurrent administration of Docetaxel and Stealth liposomal doxorubicin with radiotherapy in non-small cell lung cancer: excellent tolerance using subcutaneous amifostine for cytoprotection. Br. J. Cancer87 (4), 385–392 (2002).
  • Fernando R Maples D Senavirathna LK et al. Hyperthermia sensitization and proton beam triggered liposomal drug release for targeted tumor therapy. Pharm. Res.31 (11), 3120–3126 (2014).
  • Ma N Xu H An L Li J Sun Z Zhang X . Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy. Langmuir27 (10), 5874–5878 (2011).
  • Meng FX Qi YF Xu K et al. Preliminary studies on x-ray-sensitive liposome. Chem. Res. Chin. Univ.28 (2), 319–322 (2012).
  • Negussie AH Yarmolenko PS Partanen A et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int. J. Hyperthermia27 (2), 140–155 (2011).
  • Ranjan A Jacobs GC Woods DL et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J. Control. Rel.158 (3), 487–494 (2012).
  • Needham D Anyarambhatla G Kong G Dewhirst MW . A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res.60 (5), 1197–1201 (2000).
  • De Smet M Heijman E Langereis S Hijnen NM Grull H . Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J. Control. Rel.150 (1), 102–110 (2010).
  • O'Brien DF Mcgovern KA Bondurant B Sutherland R : Radiation sensitive liposomes. US20110217236 A1 (2013).
  • Akamatsu K . Development of ‘leaky’ liposome triggered by radiation applicable to a drug reservoir and a simple radiation dosimeter. Appl. Radiat. Isot.74, 144–151 (2013).
  • Fologea D Henry R Salamo G Mazur Y Borrelli MJ . Methods and compositions for x-ray induced release from pH sensitive liposomes. US20140328905 (2013).
  • Starkewolf ZB Miyachi L Wong J Guo T . x-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem. Commun. (Camb.)49 (25), 2545–2547 (2013).
  • Harrington KJ Mohammadtaghi S Uster PS et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res.7 (2), 243–254 (2001).
  • Kwon G Suwa S Yokoyama M Okano T Sakurai Y Kataoka K . Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J. Control. Rel.29 (1–2), 17–23 (1994).
  • Nichols JW Bae YH . Odyssey of a cancer nanoparticle: from injection site to site of action. Nano. Today7 (6), 606–618 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.