124
Views
0
CrossRef citations to date
0
Altmetric
Review

Polymeric Therapeutic Delivery Systems for the Treatment of Infectious Diseases

Pages 557-576 | Received 15 Jan 2017, Accepted 04 May 2017, Published online: 21 Jun 2017

References

  • Tabish SA . Recent trends in emerging infectious diseases. Int. J. Health Sci. (Qassim)3 (2), V–VIII (2009).
  • Morse SS . Factors in the emergence of infectious diseases. Emerg. Infect. Dis.1 (1), 7–15, (1995).
  • Lindahl JF Grace D . The consequences of human actions on risks for infectious diseases: a review. Infect. Ecol. Epidemiol.5, 30048 (2015).
  • Infectious diseases. www.who.int/topics/infectious_diseases/en
  • Brownlie J Peckham C Waage J et al. Foresight. Infectious diseases: preparing for the future. Future Threats.Office of Science and Innovation, London, UK (2006).
  • National Institutes of Health (US); Biological Sciences Curriculum Study . NIH Curriculum Supplement Series [Internet]. NIH, Bethesda, MD, USA (2007). Understanding Emerging and Re-emerging Infectious Diseases. www.ncbi.nlm.nih.gov/books/NBK20370
  • Duncan R Vicent MJ . Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev.65 (1), 60–70 (2013).
  • Pasut G Veronese FM . Polymer-drug conjugation, recent achievements and general strategies. Prog. Polym. Sci.32 (8), 933–61 (2007).
  • Parasites. www.cdc.gov/parasites/about.html
  • Andrews KT Fisher G Skinner-Adams TS . Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist.4 (2), 95–111 (2014).
  • Pink R Hudson A Mouriès MA Bendig M . Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov.4 (9), 727–740 (2005).
  • Liechty WB Kryscio DR Slaughter BV Peppas NA . Polymers for drug delivery systems. Ann. Rev. Chem. Biomol. Eng.1, 149–173 (2010)
  • Alberts B Johnson A Lewis J Raff M Roberts K Walter P . Transport into the cell from the plasma membrane: endocytosis. In : Molecular Biology of the Cell (4th Edition).Garland Science, NY, USA (2002). www.ncbi.nlm.nih.gov/books/NBK26870
  • Prabhakar U Maeda H Jain RK et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res.73 (8), 2412–2417 (2013).
  • Sanchis J Canal F Lucas R Vicent MJ . Polymer–drug conjugates for novel molecular targets. Nanomed.5 (6), 915–935 (2010).
  • Eberhard WN . Synthetic polymers as drug-delivery vehicles in medicine. Metal-based drugs. 2008 May 8 (2008).
  • Elvira C Gallardo A Roman J Cifuentes A . Covalent polymer–drug conjugates. Molecules.10 (1), 114–125 (2005).
  • Petersen I Eastman R Lanzer M . Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett.585 (11), 1551–1562 (2011).
  • Bushman M Morton L Duah N et al. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc. R. Soc. B.283 (1826), 20153038 (2016).
  • Paloque L Ramadani AP Mercereau-Puijalon O Augereau JM Benoit-Vical F . Plasmodium falciparum: multifaceted resistance to artemisinins. Malaria J.15 (1), 1 (2016).
  • Dogovski C Xie SC Burgio G et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol.13 (4), e1002132 (2015).
  • Kumar S Singh RK Sharma R Murthy RS Bhardwaj TR . Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur. J. Pharm. Sci.66, 123–137 (2015).
  • Urbán P Valle-Delgado JJ Mauro N et al. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to plasmodium. J. Control. Rel.177, 84–95 (2014).
  • Aderibigbe BA Ray SS . Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy. J. Drug Deliv. Sci. Technol.36, 34–45 (2016).
  • Aderibigbe BA Neuse EW Sadiku ER Ray SS Smith PJ . Synthesis, characterization, and antiplasmodial activity of polymer-incorporated aminoquinolines. J. Biomed. Mater. Res. Part A102 (1), 1941–1949 (2014).
  • Tripathy S Das S Chakraborty SP Sahu SK Pramanik P Roy S . Synthesis, characterization of chitosan–tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach. Int. J. Pharm.434 (1), 292–305 (2012).
  • Nagle AS Khare S Kumar AB et al. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev.114 (22), 11305–11347 (2014).
  • Nicoletti S Seifert K Gilbert IH . Water-soluble polymer–drug conjugates for combination chemotherapy against visceral leishmaniasis. Bioorg. Med. Chem.18 (7), 2559–2565 (2010).
  • Nan A Croft SL Yardley V Ghandehari H . Targetable water-soluble polymer–drug conjugates for the treatment of visceral leishmaniasis. J. Control Rel.94 (1), 115–127 (2004).
  • Domb AJ Polacheck I . Antifungal and anti-parasitic conjugates of amphotericin B derivatives WO 2011061747 A1. 26May 2011.
  • Zhao W Liu F Chen Y Bai J Gao W . Synthesis of well-defined protein–polymer conjugates for biomedicine. Polymer66, A1–A10 (2015).
  • Shibata H Nakagawa S Tsutsumi Y . Optimization of protein therapies by polymer-conjugation as an effective DDS. Molecules.10 (1), 162–180 (2005).
  • Klumperman L William P Rautenbach M . Conjugate for treating malaria WO 2016024240 A1. 18February 2016.
  • Blackall DP Armstrong JK Meiselman HJ Fisher TC . Polyethylene glycol–coated red blood cells fail to bind glycophorin A-specific antibodies and are impervious to invasion by the Plasmodium falciparum malaria parasite. Blood97 (2), 551–556 (2001).
  • Luque-Ortega JR Beatriz G Hornillos V et al. Defeating Leishmania resistance to miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy. J. Control. Rel.161 (3), 835–842 (2012).
  • Kóczán G Ghose AC Mookerjee A Hudecz F . Methotrexate conjugate with branched polypeptide influences Leishmania donovani infection in vitro and in experimental animals. Bioconjugate Chem.13 (3), 518–524 (2002).
  • Díaz E Köhidai L Ríos A et al. Leishmania braziliensis: cytotoxic, cytostatic and chemotactic effects of poly-lysine–methotrexate-conjugates. Exp. Parasitol.135 (1), 134–141 (2013).
  • Gonzalez LI . Stereoisomer peptides, their polymer conjugates, their encapsulation into nanoparticles, and uses thereof for the treatment of diseases caused by abnormal angiogenesis. US 20150050351 A1, 19February 2014.
  • Boas U Christensen JB Heegaard PMH . Dendrimers in Medicine and Biotechnology: New Molecular Tools. The Royal Society of Chemistry, Cambridge, UK, 1–25 (2006). www.springer.com/978–0–85404–852–6
  • Kesharwani P Jain K Jain NK . Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci.39 (2), 268–307 (2014).
  • Lin Q Jiang G Tong K . Dendrimers in drug-delivery applications. Des. Monomers Polym.13 (4), 301–324 (2010).
  • Abbasi E Aval SF Akbarzadeh A et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett.9 (1), 247 (2014).
  • Kaminskas LM Boyd BJ Karellas P et al. Mol. Pharm. 4 (6), 949–961 (2007).
  • Kobayashi H Sato N Hiraga A et al. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn. Reson. Med.45 (3), 454–460 (2001).
  • Taratula O Garbuzenko OB Kirkpatrick P et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J. Control. Rel.140 (3), 284–293 (2009).
  • Ndior T Ndiaye CM Faye FD Samb A . Synthesis of naphthoquinone dendrimer based materials as potential antimalarial drugs. Asian J. Chem.27 (11), 4063–4066 (2015).
  • Bhadra D Bhadra S Jain NK . PEGylated peptide-based dendritic nanoparticulate systems for delivery of artemether. J. Drug Deliv. Sci. Technol.15 (1), 65–73 (2005).
  • Bhadra D Bhadra S Jain NK . PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res.23 (3), 623–33 (2006).
  • Bhadra D Yadav AK Bhadra S Jain NK . Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int. J. Pharm.295, 221–33 (2005).
  • Jain K Verma AK Mishra PR Jain NK . Characterization and evaluation of amphotericin B loaded MDP conjugated poly (propylene imine) dendrimers. Nanomed. Nanotechnol. Biol. Med.11 (3), 705–713 (2015).
  • Jain K Verma AK Mishra PR Jain NK . Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob. Agents Chemother.59 (5), 2479–2487 (2015).
  • Anuradha S . Antiviral agents and treatment of viral infections. JIMSA27 (4), 191 (2014).
  • Desai M Iyer G Dikshit RK . Antiretroviral drugs: critical issues and recent advances. Ind. J. Pharmacol.44 (3), 288 (2012).
  • Perelson AS Neumann AU Markowitz M Leonard JM Ho DD . HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science.271 (5255), 1582 (1996).
  • Siliciano JD Kajdas J Finzi D et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. (6), 727–728 (2003).
  • Williams KJ Loeb LA . Retroviral reverse transcriptases: error frequencies and mutagenesis. In : Genetic Diversity of RNA Viruses (Volume 176).JohnJ ( Ed.). Springer, Berlin, Heidelberg, Germany, 165–180 (1992).
  • Kulkosky J Bray S . HAART-persistent HIV-1 latent reservoirs: their origin, mechanisms of stability and potential strategies for eradication. Curr. HIV Res.4 (2), 199–208 (2006).
  • Finzi D Hermankova M Pierson T et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science278 (5341), 1295–300 (1997).
  • Smith AA Zuwala K Pilgram O Johansen KS Tolstrup M Dagnæs-Hansen F Zelikin AN . Albumin–polymer–drug conjugates: long circulating, high payload drug delivery vehicles. ACS Macro Lett.5 (10), 1089–1094 (2016).
  • Ding S Song M Sim BC et al. Multivalent antiviral XTEN–peptide conjugates with long in vivo half-life and enhanced solubility. Bioconjug. Chem.25 (7), 1351–1359 (2014).
  • Huet T Kerbarh O Schols D et al. Long-lasting enfuvirtide carrier pentasaccharide conjugates with potent anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother.54 (1), 134–142 (2010).
  • Welch BD Francis JN Redman JS et al. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J. Virol.84 (21), 11235–11244 (2010).
  • Francis JN Redman JS Eckert DM Kay MS . Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry. Bioconjug. Chem.23 (6), 1252–1258 (2012).
  • Gonzalez LI . Stereoisomer peptides and their polymer conjugates for HIV disease. US patent: US8,715,685 (2014).
  • Danial M Root MJ Klok HA . Polyvalent side chain peptide–synthetic polymer conjugates as HIV-1 entry inhibitors. Biomacromolecules13 (5), 1438–1447 (2010).
  • Wang C Shi W Cai L et al. Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains. J. Antimicrob. Chemother.69 (6), 1537–1545 (2014).
  • Influenza: challenges in diagnosis and management in the emergency department. EB Medicine.11 (11), 1–24 (2009).
  • Webster RG Govorkova EA . Continuing challenges in influenza. Ann NY Acad. Sci.1323 (1), 115–139 (2014).
  • Kilinc YB Akdeste ZM Koc RC Bagirova M Allahverdiyev A . Synthesis and characterization of antigenic influenza A M2e protein peptide-poly (acrylic) acid bioconjugate and determination of toxicity in vitro. Bioengineered.5 (6), 357–362 (2014).
  • Li X Wu P Gao GF Cheng S . Carbohydrate-functionalized chitosan fiber for influenza virus capture. Biomacromolecules.12 (11), 3962–3969 (2011).
  • Larson AM Chen J Klibanov AM . Conjugation to polymeric chains of influenza drugs targeting M2 ion channels partially restores inhibition of drug-resistant mutants. J. Pharm. Sci.102 (8), 2450–2459 (2013).
  • Buggs AM . Viral hepatitis. http://emedicine.medscape.com/article/775507-overview
  • Koumbi L . Current and future antiviral drug therapies of hepatitis B chronic infection. World J. Hepatol.7 (8), 1030–1040 (2015).
  • Lin KC . Pharmaessentia Corp., assignee. Protein-polymer conjugates. US patent: US8,143,214 (2012).
  • Herpes simplex virus. www.who.int/mediacentre/factsheets/fs400/en
  • Jiang YC Feng H Lin YC Guo XR . New strategies against drug resistance to herpes simplex virus. Int. J. Oral Sci. (1), 1–6 (2016).
  • Steinbach JM Weller CE Booth CJ Saltzman WM . Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J. Control Rel.162 (1), 102–110 (2012).
  • Human Papillomavirus and Cancer. www.cdc.gov/cancer/hpv
  • Liu TY Hussein WM Jia Z et al. Self-adjuvanting polymer–peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules14 (8), 2798–2806 (2013).
  • Hussein WM Liu TY Jia Z et al. Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorg. Med. Chem.24 (18), 4372–4380 (2016).
  • Moyle PM Dai W Liu TY et al. Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorg. Med. Chem. Lett.25 (23), 5570–5575 (2015).
  • Yurkovetskiy AV Yin M Bodyak N et al. A polymer-based antibody–vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res.75 (16), 3365–3372 (2015).
  • Chen Y Wang J Wang J et al. Aptamer functionalized cisplatin–albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J. Biomed. Nanotechnol.12 (4), 656–666 (2016).
  • Chu DS Bocek MJ Shi J et al. Multivalent display of pendant pro-apoptotic peptides increases cytotoxic activity. J. Control. Rel.205, 155–161 (2015).
  • Zeng Q Peng S Monie A et al. Control of cervicovaginal HPV-16 E7-expressing tumors by the combination of therapeutic HPV vaccination and vascular disrupting agents. Hum. Gene Ther.22 (7), 809–819 (2010).
  • Liu TY Hussein WM Giddam AK et al. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J. Med. Chem.58 (2), 888–896 (2014).
  • Zuwala K Smith AA Tolstrup M Zelikin AN . HIV anti-latency treatment mediated by macromolecular prodrugs of histone deacetylase inhibitor, panobinostat. Chem. Sci.2353–2358 (2016).
  • Gunaseelan S Debrah O Wan L et al. Synthesis of poly(ethylene glycol)-based saquinavir prodrug conjugates and assessment of release and anti-HIV-1 bioactivity using a novel protease inhibition assay. Bioconjug. Chem.15 (6), 1322–1333 (2004).
  • Wan L Zhang X Gunaseelan S et al. Novel multi-component nanopharmaceuticals derived from poly(ethylene) glycol, retro-inverso-Tat nonapeptide and saquinavir demonstrate combined anti-HIV effects. AIDS Res. Ther.3 (1), 1 (2006).
  • Wannachaiyasit S Chanvorachote P Nimmannit U . A novel anti-HIV dextrin-zidovudine conjugate improving the pharmacokinetics of zidovudine in rats. AAPS Pharm. Sci. Tech.9 (3), 840–850 (2008).
  • Chimalakonda KC Agarwal HK Kumar A Parang K Mehvar R . Synthesis, analysis, in vitro characterization, and in vivo disposition of a lamivudine-dextran conjugate for selective antiviral delivery to the liver. Bioconjug. Chem.18 (6), 2097–2108 (2007).
  • Gao Y Katsuraya K Kaneko Y Mimura T Nakashima H Uryu T . Synthesis of azidothymidine-bound sulfated alkyl oligosaccharides and their inhibitory effects on AIDS virus infection in vitro. Polym. J.30, 243–248 (1998).
  • Vlieghe P Clerc T Pannecouque C et al. Synthesis of new covalently bound κ-carrageenan-AZT conjugates. J. Med. Chem.45, 1275–1283 (2002).
  • Lee CM Weight AK Haldar J Wang L Klibanov AM Chen J . Polymer-attached zanamivir inhibits synergistically both early and late stages of influenza virus infection. Proc. Natl Acad. Sci. USA109 (50), 20385–20390 (2012).
  • Weight AK Belser JA Tumpey TM Chen J Klibanov AM . Zanamivir conjugated to poly-L-glutamine is much more active against influenza viruses in mice and ferrets than the drug itself. Pharm. Res.31 (2), 466–474 (2014).
  • Weight A Lee CM Klibanov AM Chen J . Massachusetts Institute Of Technology, assignee. Polymer-attached inhibitors of influenza virus. US patent application US13/839,787. 2013 Mar 15.
  • Riber CF Hinton TM Gajda P et al. Macromolecular prodrugs of ribavirin: structure function correlation as inhibitors of influenza infectivity. Mol. Pharm. doi:10.1021/acs.molpharmaceut.6b00826 (2016) ( Epub ahead of print).
  • Gagey D Ravetti S Castro EF et al. Antiviral activity of 5′-O-carbonate-2′, 3′-dideoxy-3′-thiacytidine prodrugs against hepatitis B virus in HepG2 2.2. 15 cells. Int. J. Antimicrob. Agents.36 (6), 566–569 (2010).
  • Ishihara T Kaneko K Ishihara T Mizushima T . Development of biodegradable nanoparticles for liver-specific ribavirin delivery. J. Pharm. Sci.103 (12), 4005–4011, (2014).
  • Bailon P Palleroni A Schaffer CA et al. Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjug. Chem.12 (2), 195–202 (2001).
  • Ji J Zuo P Wang YL . Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res. Lett.10 (1), 1–8 (2015).
  • Perisé-Barrios AJ Jiménez JL Domínguez-Soto A et al. Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. J. Control. Rel.184, 51–57 (2014).
  • Sepúlveda-Crespo D Gómez R De La Mata FJ Jiménez JL Muñoz-Fernández MÁ . Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: recent trends and developments in HIV treatment/therapy. Nanomed. Nanotechnol. Biol. Med.11 (6), 1481–1498 (2015).
  • Zhou J Neff CP Liu X et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther.19 (12), 2228–2238 (2011).
  • Jaramillo-Ruiz D De La Mata FJ Gómez R Correa-Rocha R Muñoz-Fernández MÁ . Nanotechnology as a new therapeutic approach to prevent the HIV-Infection of Treg Cells. PLoS ONE11 (1), e0145760 (2016).
  • Galan M Sanchez-Rodriguez J Cangiotti M et al. Antiviral properties against HIV of water soluble copper carbosilane dendrimers and their EPR characterization. Curr. Med. Chem.19 (29), 4984–4994 (2012).
  • Han S Kanamoto T Nakashima H Yoshida T . Synthesis of a new amphiphilic glycodendrimer with antiviral functionality. Carbohydr. Polym.90 (2), 1061–1068 (2012).
  • Bon I Lembo D Rusnati M et al. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures. PLoS ONE8 (10), e76482 (2013).
  • Telwatte S Moore K Johnson A et al. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res.90 (3), 195–199 (2011).
  • Landers JJ Cao Z Lee I et al. Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers. J. Infect. Dis.186 (9), 1222–1230 (2002).
  • Kwon SJ Na DH Kwak JH et al. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nat. Nanotechnol. doi:10.1038/nnano.2016.181 (2016) ( Epub ahead of print).
  • Chahal JS Khan OF Cooper CL et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA113 (29), E4133–4142 (2016).
  • Sepúlveda-Crespo D Jiménez JL Gómez R et al. Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. Nanomed. Nanotechnol. Biol. Med.13 (1), 49–58 (2017).
  • Motoyama K Mitsuyasu R Akao C et al. Potential use of thioalkylated mannose-modified dendrimer (G3)/α-cyclodextrin conjugate as an NF-κB siRNA carrier for the treatment of fulminant hepatitis. Mol. Pharm.12 (9), 3129–3136 (2015).
  • Starpharma’s dendrimer a potential viral conjunctivitis treatment, 13 May 2013. www.starpharma.com/news/159
  • Price CF Tyssen D Sonza S et al. SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS ONE6 (9), e24095 (2011).
  • Falanga A Tarallo R Carberry T Galdiero M Weck M Galdiero S . Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PLoS ONE9 (11), e112128 (2014).
  • Ceña-Diez R Vacas-Córdoba E García-Broncano P et al. Prevention of vaginal and rectal herpes simplex virus type 2 transmission in mice: mechanism of antiviral action. Int. J. Nanomedicine11, 2147–2162 (2016).
  • Luganini A Nicoletto SF Pizzuto L et al. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother.55 (7), 3231–3239 (2011).
  • Kobayashi A Yokoyama Y Osawa Y Miura R Mizunuma H . Gene therapy for ovarian cancer using carbonyl reductase 1 DNA with a polyamidoamine dendrimer in mouse models. Cancer Gene Ther.23 (1), 24–28 (2016).
  • Mekuria SL Debele TA Chou HY Tsai HC . IL-6 antibody and RGD peptide conjugated poly(amidoamine) dendrimer for targeted drug delivery of HeLa cells. J. Phys. Chem. B.120 (1), 123–130 (2016).
  • Khatri S Das NG Das SK . Effect of methotrexate conjugated PAMAM dendrimers on the viability of MES-SA uterine cancer cells. J. Pharm. Bioall. Sci.6 (4), 297 (2014).
  • Dutta T Burgess M McMillan NA Parekh HS . Dendrosome-based delivery of siRNA against E6 and E7 oncogenes in cervical cancer. Nanomed. Nanotechnol. Biol. Med.6 (3), 463–470 (2010).
  • Chiappetta DA Hocht C Taira C Sosnik A . Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine5 (1), 11–23, (2010).
  • Chiappetta DA Facorro G de Celis ER Sosnik A . Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine7 (5), 624–637 (2011).
  • Chiappetta DA Hocht C Taira C Sosnik A . Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials32 (9), 2379–2387 (2011).
  • Jiménez-Pardo I González-Pastor R Lancelot A et al. Shell cross-linked polymeric micelles as camptothecin nanocarriers for anti-HCV therapy. Macromol. Biosci.15 (10), 1381–1391 (2015).
  • Layek B Lipp L Singh J . APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J. Control Rel.207, 143–153 (2015).
  • Accardo A Vitiello M Tesauro D et al. Self-assembled or mixed peptide amphiphile micelles from herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int. J. Nanomed.9, 2137–2148 (2014).
  • Guo Q Guan D Dong B Nan F Zhang Y . Charge-conversional binary drug delivery polymeric micelles for combined chemotherapy of cervical cancer. Int. J. Polym. Mater. Polym. Biomater.64 (18), 978–987 (2015).
  • Feng CH Dan D Yan FU et al. Anti-tumor activity of biodegradable polymer-paclitaxel conjugated micelle against mice U14 cervical cancers. Chem. Res. Chinese Universites.28 (4), 656–661 (2012).
  • Matsumoto Y Miyamoto Y Cabral H et al. Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating the proteasome inhibitor MG132. Cancer Sci.107 (6), 773–781 (2016).
  • Duncan R . Polymer therapeutics as nanomedicines: new perspectives. Curr. Opin. Biotechnol.22 (4), 492–501 (2011).
  • Larson N Ghandehari H . Polymeric conjugates for drug delivery. Chem. Mater.24 (5), 840–853 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.