280
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Therapeutic Delivery Systems of Bacteriophage and Bacteriophage-Encoded Endolysins

, , &
Pages 543-556 | Received 14 Mar 2017, Accepted 04 May 2017, Published online: 21 Jun 2017

References

  • Sir Alexander Fleming - Nobel Lecture: Penicillin. www.nobelprize.org/nobel_prizes/medicine/laureates/1945/fleming-lecture.html
  • Nobrega FL Costa AR Kluskens LD Azeredo J . Revisiting phage therapy: new applications for old resources. Trends in Microbiol.23 (4), 185–191 (2015).
  • Twort FW . The discovery of the ‘bacteriophage’. The Lancet205 (5303), 845 (1925).
  • Hendrix RW . Bacteriophages: evolution of the majority. Theor. Popul. Biol.61 (4), 471–480 (2002).
  • Campbell A . The future of bacteriophage biology. Nat. Rev. Genet.4 (6), 471–477 (2003).
  • Cisek AA Dąbrowska I Gregorczyk KP Wyżewski Z . Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr. Microbiol.74 (2), 277–283 (2017).
  • Magnone JP Marek PJ Sulakvelidze A Senecal AG . Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. J. Food Prot.76 (8), 1336–1341 (2013).
  • Schmelcher M Loessner MJ . Application of bacteriophages for detection of foodborne pathogens. Bacteriophage4 (2), e28137 (2014).
  • Haq IU Chaudhry WN Akhtar MN Andleeb S Qadri I . Bacteriophages and their implications on future biotechnology: a review. Virol. J.9 (1), 9 (2012).
  • Weber-Dąbrowska B Jończyk-Matysiak E Żaczek M Łobocka M Łusiak-Szelachowska M Górski A . Bacteriophage procurement for therapeutic purposes. Front. Microbiol.7, 1177 (2016).
  • Jassim SAA Limoges RG . Natural solution to antibiotic resistance: bacteriophages ‘the living drugs’. World J. Microbiol. Biotechnol.30 (8), 2153–2170 (2014).
  • Sarhan WA Azzazy HME . Phage approved in food, why not as a therapeutic?Expert Rev. Anti Infect. Ther.13 (1), 91–101 (2015).
  • Kingwell K . Bacteriophage therapies re-enter clinical trials. Nat. Rev. Drug Discov.14 (8), 515–516 (2015).
  • Evaluation of phage therapy for the treatment of escherichia coli and pseudomonas aeruginosa wound infections in burned patients (PHAGOBURN). https://clinicaltrials.gov/ct2/show/NCT02116010
  • Ascending dose study of the safety of AB-SA01 when topically applied to intact skin of healthy adults. https://clinicaltrials.gov/ct2/show/NCT02757755
  • Wright A Hawkins CH Anggard EE Harper DR . A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol.34 (4), 349–357 (2009).
  • Rhoads DD Wolcott RD Kuskowski MA Wolcott BM Ward LS Sulakvelidze A . Bacteriophage therapy of venous leg ulcers in humans: results of a Phase I safety trial. J. Wound Care18 (6), 237–238, 240–243 (2009).
  • Mann NH . The potential of phages to prevent MRSA infections. Res. Microbiol.159 (5), 400–405 (2008).
  • Cooper CJ Khan Mirzaei M Nilsson AS . Adapting drug approval pathways for bacteriophage-based therapeutics. Front. Microbiol.7, 1209 (2016).
  • Ly-Chatain MH . The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol.5, 51 (2014).
  • Srinivasan S Alexander JF Driessen WH et al. Bacteriophage associated silicon particles: design and characterization of a novel theranostic vector with improved payload carrying potential. J. Mater. Chem. B1 (39), doi:10.1039/C1033TB20595A (2013) ( Epub ahead of print).
  • Yata T Lee KY Dharakul T et al. Hybrid nanomaterial complexes for advanced phage-guided gene delivery. Mol. Ther. Nucleic Acids3, e185 (2014).
  • Saboo S Tumban E Peabody J et al. Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol. Pharm.13 (5), 1646–1655 (2016).
  • van der Merwe RG van Helden PD Warren RM Sampson SL Gey van Pittius NC . Phage-based detection of bacterial pathogens. Analyst139 (11), 2617–2626 (2014).
  • Bhattarai SR Yoo SY Lee SW Dean D . Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection. Biomaterials33 (20), 5166–5174 (2012).
  • Hosseinidoust Z Olsson ALJ Tufenkji N . Going viral: designing bioactive surfaces with bacteriophage. Colloids Surf. B124, 2–16 (2014).
  • Yosef I Manor M Qimron U . Counteracting selection for antibiotic-resistant bacteria. Bacteriophage6 (1), e1096996 (2016).
  • Yosef I Manor M Kiro R Qimron U . Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA112 (23), 7267–7272 (2015).
  • Fairhead H . SASP gene delivery: a novel antibacterial approach. Drug News Perspect.22 (4), 197–203 (2009).
  • Sahly H Podschun R . Clinical, bacteriological, and serological aspects of Klebsiella infections and their spondylarthropathic sequelae. Clin. Diagn. Lab. Immunol.4 (4), 393–399 (1997).
  • Cortes G Alvarez D Saus C Alberti S . Role of lung epithelial cells in defense against Klebsiella pneumoniae pneumonia. Infect. Immun.70 (3), 1075–1080 (2002).
  • Singla S Harjai K Katare OP Chhibber S . Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS ONE11 (4), e0153777 (2016).
  • Nieth A Verseux C Barnert S Suss R Romer W . A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin. Drug Deliv.12 (9), 1411–1424 (2015).
  • Lusiak-Szelachowska M Zaczek M Weber-Dabrowska B et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol.27 (6), 295–304 (2014).
  • Singla S Harjai K Katare OP Chhibber S . Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J. Infect. Dis.212 (2), 325–334 (2015).
  • Singla S Harjai K Raza K Wadhwa S Katare OP Chhibber S . Phospholipid vesicles encapsulated bacteriophage: a novel approach to enhance phage biodistribution. J. Virol. Methods236, 68–76 (2016).
  • Balcao VM Glasser CA Chaud MV del Fiol FS Tubino M Vila M . Biomimetic aqueous-core lipid nanoballoons integrating a multiple emulsion formulation: a suitable housing system for viable lytic bacteriophages. Colloids Surf. B123, 478–485 (2014).
  • Esteban PP Alves DR Enright MC et al. Enhancement of the antimicrobial properties of bacteriophage-k via stabilization using oil-in-water nano-emulsions. Biotechnol. Prog.30 (4), 932–944 (2014).
  • Esteban PP Jenkins ATA Arnot TC . Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential. Colloids Surf. B139, 87–94 (2016).
  • Ma YS Pacan JC Wang Q et al. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl. Environ. Microbiol.74 (15), 4799–4805 (2008).
  • Ma YS Pacan JC Wang Q Sabour PM Huang XQ Xu YP . Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocolloids26 (2), 434–440 (2012).
  • Tang Z Huang X Sabour PM Chambers JR Wang Q . Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. LWT - Food Sci. Technol.60 (1), 263–270 (2015).
  • Kim S Jo A Ahn J . Application of chitosan-alginate microspheres for the sustained release of bacteriophage in simulated gastrointestinal conditions. Int. J. Food Sci. Technol.50 (4), 913–918 (2015).
  • Pearson HA Sahukhal GS Elasri MO Urban MW . Phage-bacterium war on polymeric surfaces: can surface-anchored bacteriophages eliminate microbial infections?Biomacromolecules14 (5), 1257–1261 (2013).
  • Olsson ALJ Wargenau A Tufenkji N . Optimizing bacteriophage surface densities for bacterial capture and sensing in quartz crystal microbalance with dissipation monitoring. ACS Appl. Mater. Interfaces8 (22), 13698–13706 (2016).
  • Tawil N Sacher E Mandeville R Meunier M . Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. J. Phys. Chem. C117 (13), 6686–6691 (2013).
  • Wang C Sauvageau D Elias A . Immobilization of active bacteriophages on polyhydroxyalkanoate surfaces. ACS Appl. Mater. Interfaces8 (2), 1128–1138 (2016).
  • Khalil RI Irorere UV Radecka I et al. Poly-γ-glutamic acid: biodegradable polymer for potential protection of beneficial viruses. Materials9 (1) (2016).
  • Zhang J Pritchard E Hu X et al. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proc. Natl Acad. Sci. USA109 (30), 11981–11986 (2012).
  • Sutherland TD Sriskantha A Church JS Strive T Trueman HE Kameda T . Stabilization of viruses by encapsulation in silk proteins. ACS Appl. Mater. Interfaces6 (20), 18189–18196 (2014).
  • Semler DD Goudie AD Finlay WH Dennis JJ . Aerosol phage therapy efficacy in burkholderia cepacia complex respiratory infections. Antimicrob. Agents Chemother.58 (7), 4005–4013 (2014).
  • Hansen CR Pressler T Koch C H⊘iby N . Long-term azitromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection; an observational cohort study. J. Cyst. Fibros.4 (1), 35–40 (2005).
  • Sahota JS Smith CM Radhakrishnan P et al. Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. J. Aerosol Med. Pulm. Drug Deliv.28 (5), 353–360 (2015).
  • Bosquillon C Lombry C Préat V Vanbever R . Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J. Control. Rel.70 (3), 329–339 (2001).
  • Golshahi L Lynch KH Dennis JJ Finlay WH . In vitro lung delivery of bacteriophages KS4-M and PhiKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol.110 (1), 106–117 (2011).
  • Vandenheuvel D Meeus J Lavigne R Van den Mooter G . Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix. Int. J. Pharm.472 (1–2), 202–205 (2014).
  • Vandenheuvel D Singh A Vandersteegen K Klumpp J Lavigne R Van den Mooter G . Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur. J. Pharm. Biopharm.84 (3), 578–582 (2013).
  • Dixon DV Hosseinidoust Z Tufenkji N . Effects of environmental and clinical interferents on the host capture efficiency of immobilized bacteriophages. Langmuir30 (11), 3184–3190 (2014).
  • Hathaway H Alves DR Bean J et al. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur. J. Pharm. Biopharm.96, 437–441 (2015).
  • Starr CR Engleberg NC . Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infect. Immun.74 (1), 40–48 (2006).
  • Bean JE Alves DR Laabei M et al. Triggered release of Bacteriophage K from agarose/hyaluronan hydrogel matrixes by Staphylococcus aureus virulence factors. Chem. Mater.26 (24), 7201–7208 (2014).
  • Chen L Zhao X Lin Y Su Z Wang Q . Dual stimuli-responsive supramolecular hydrogel of bionanoparticles and hyaluronan. Polym. Chem.5 (23), 6754–6760 (2014).
  • Chen Z Li N Chen L Lee J Gassensmith JJ . Dual functionalized bacteriophage qbeta as a photocaged drug carrier. Small12 (33), 4563–4571 (2016).
  • Schwarz B Douglas T . Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.7 (5), 722–735 (2015).
  • Fischetti VA Nelson D Schuch R . Reinventing phage therapy: are the parts greater than the sum?Nature Biotechnol.24 (12), 1508–1511 (2006).
  • Pastagia M Schuch R Fischetti VA Huang DB . Lysins: the arrival of pathogen-directed anti-infectives. J. Med. Microbiol.62, 1506–1516 (2013).
  • Pohane AA Jain V . Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiology161 (12), 2269–2276 (2015).
  • Moon BY Park JY Robinson DA et al. Mobilization of genomic islands of Staphylococcus aureus by temperate bacteriophage. PLoS ONE11 (3), e0151409 (2016).
  • Ajuebor J McAuliffe O O‘Mahony J Ross RP Hill C Coffey A . Bacteriophage endolysins and their applications. Sci. Prog.99 (2), 183–199 (2016).
  • Gutierrez D Ruas-Madiedo P Martínez B Rodríguez A García P . Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS ONE9 (9), e107307 (2014).
  • Singh PK Donovan DM Kumar A . Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob. Agents Chemother.58 (8), 4621–4629 (2014).
  • Fenton M Keary R McAuliffe O Ross RP O‘Mahony J Coffey A . Bacteriophage-derived peptidase CHAP(K) eliminates and prevents staphylococcal biofilms. Int. J. Microbiol.2013, 625341 (2013).
  • Shen Y Koeller T Kreikemeyer B Nelson DC . Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. Antimicrob. Agents Chemother.68 (8), 1818–1824 (2013).
  • Schuch R Nelson D Fischetti VA . A bacteriolytic agent that detects and kills Bacillus anthracis. Nature418 (6900), 884–889 (2002).
  • Lai M-J Soo P-C Lin N-T et al. Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int. J. Antimicrob. Agents42 (2), 141–148 (2013).
  • Lai M-J Liu C-C Jiang S-J et al. Antimycobacterial activities of endolysins derived from a mycobacteriophage, BTCU-1. Molecules20 (10), 19277–19290 (2015).
  • Herpers B . Endolysins: redefining antibacterial therapy. Future Microbiol.10 (3), 309–311 (2015).
  • Schuch R Lee HM Schneider BC et al. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J. Infect. Dis.209 (9), 1469–1478 (2014).
  • Briers Y Lavigne R . Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol.10 (3), 377–390 (2015).
  • Briers Y Walmagh M Van Puyenbroeck V et al. Engineered endolysin-based ‘artilysins’ to combat multidrug-resistant gram-negative pathogens. mBio5 (4), e01379–e02314 (2014).
  • Defraine V Schuermans J Grymonprez B et al. Efficacy of Artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob. Agents Chemother.60 (6), 3480–3488 (2016).
  • Gerstmans H Rodriguez-Rubio L Lavigne R Briers Y . From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem. Soc. Trans.44, 123–128 (2016).
  • Rodriguez-Rubio L Chang WL Gutierrez D et al. ‘Artilysation’ of endolysin lambda Sa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci. Rep.6 (2016).
  • Filatova LY Donovan DM Becker SC et al. Physicochemical characterization of the staphylolytic LysK enzyme in complexes with polycationic polymers as a potent antimicrobial. Biochimie95 (9), 1689–1696 (2013).
  • Fenton M Casey PG Hill C et al. The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice. Bioeng. Bugs1 (6), 404–407 (2010).
  • Fenton M Ross RP McAuliffe O O‘Mahony J Coffey A . Characterization of the staphylococcal bacteriophage lysin CHAP(K). J. Appl. Microbiol.111 (4), 1025–1035 (2011).
  • Hathaway H Ajuebor J Stephens L et al. Thermally triggered release of the bacteriophage endolysin CHAPK and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus (MRSA). J. Control. Rel.245, 108–115 (2017).
  • La Ragione RM Narbad A Gasson MJ Woodward MJ . In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett. Appl. Microbiol.38 (3), 197–205 (2004).
  • Gervasi T Horn N Wegmann U Dugo G Narbad A Mayer MJ . Expression and delivery of an endolysin to combat Clostridium perfringens. Appl. Microbiol. Biotechnol.98 (6), 2495–2505 (2014).
  • Promise for Antibiotics and Therapeutics for Health Act or the PATH Act S.185. www.congress.gov/bill/114th-congress/senate-bill/185
  • Right to Try Act of 2015 H.R.3012. www.congress.gov/bill/114th-congress/house-bill/3012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.