115
Views
0
CrossRef citations to date
0
Altmetric
Review

Applying Nanotherapeutics to Improve Chemoradiotherapy Treatment for Cancer

&
Pages 791-803 | Received 23 Mar 2017, Accepted 26 Jun 2017, Published online: 21 Aug 2017

References

  • Ngoune R Peters A Von Elverfeldt D Winkler K Putz G . Accumulating nanoparticles by EPR: a route of no return. J. Control. Rel.238, 58–70 (2016).
  • Hansen AE Petersen AL Henriksen JR et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano9 (7), 6985–6995 (2015).
  • Giustini AJ Petryk AA Hoopes PJ . Ionizing radiation increases systemic nanoparticle tumor accumulation. Nanomedicine8 (6), 818–821 (2012).
  • Hariri G Zhang Y Fu A et al. Radiation-guided P-selectin antibody targeted to lung cancer. Ann. Biomed. Eng.36 (5), 821–830 (2008).
  • Upreti M Jyoti A Johnson SE et al. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer. Oncotarget7 (27), 41559–41574 (2016).
  • Shamay Y Elkabets M Li H et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Sci. Transl. Med.8 (345), 345ra387 (2016).
  • Ernsting MJ Hoang B Lohse I et al. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J. Control. Rel.206, 122–130 (2015).
  • Zhou H Qian W Uckun FM et al. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer. Proc. SPIE Int. Soc. Opt. Eng. 9836 (2016).
  • Caster JM Yu SK Patel AN et al. Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomedicine doi:10.1016/j.nano.2017.03.002 (2017) ( Epub ahead of print).
  • Tian X Nguyen M Foote HP et al. CRLX101, a nanoparticle–drug conjugate containing camptothecin, improves rectal cancer chemoradiotherapy by inhibiting DNA repair and HIF1alpha. Cancer Res.77 (1), 112–122 (2017).
  • Karve S Werner ME Sukumar R et al. Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc. Natl Acad. Sci. USA109 (21), 8230–8235 (2012).
  • Au KM Min Y Tian X et al. Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano9 (9), 8976–8996 (2015).
  • Pham E Birrer MJ Eliasof S et al. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer. Res.21 (4), 808–818 (2015).
  • Tian X Lara H Wagner KT et al. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery. Nanoscale7 (47), 20211–20219 (2015).
  • Aschele C Cionini L Lonardi S et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized Phase III trial. J. Clin. Oncol.29 (20), 2773–2780 (2011).
  • Gerard JP Azria D Gourgou-Bourgade S et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the Phase III trial ACCORD 12/0405-Prodige 2. J. Clin. Oncol.28 (10), 1638–1644 (2010).
  • Choy H Jain AK Moughan J et al. RTOG 0017: a Phase I trial of concurrent gemcitabine/carboplatin or gemcitabine/paclitaxel and radiation therapy (‘ping-pong trial’) followed by adjuvant chemotherapy for patients with favorable prognosis inoperable stage IIIA/B non-small cell lung cancer. J. Thorac. Oncol.4 (1), 80–86 (2009).
  • Tian X Warner SB Wagner KT et al. Preclinical evaluation of promitil, a radiation-responsive liposomal formulation of mitomycin c prodrug, in chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys.96 (3), 547–555 (2016).
  • Rwei AY Wang W Kohane DS . Photoresponsive nanoparticles for drug delivery. Nano Today10 (4), 451–467 (2015).
  • Kamkaew A Chen F Zhan Y Majewski RL Cai W . Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano10 (4), 3918–3935 (2016).
  • Chen H Wang GD Chuang YJ et al. Nanoscintillator-mediated x-ray inducible photodynamic therapy for in vivo cancer treatment. Nano. Lett.15 (4), 2249–2256 (2015).
  • Ma L Zou X Hossu M Chen W . Synthesis of ZnS:Ag, Co water-soluble blue afterglow nanoparticles and application in photodynamic activation. Nanotechnology27 (31), 315602 (2016).
  • Khadem Abolfazli M Mahdavi SR Ataei G . Studying effects of gold nanoparticle on dose enhancement in megavoltage radiation. J. Biomed. Phys. Eng.5 (4), 185–190 (2015).
  • Jain S Coulter JA Hounsell AR et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys.79 (2), 531–539 (2011).
  • Maier-Hauff K Ulrich F Nestler D et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol.103 (2), 317–324 (2011).
  • Maggiorella L Barouch G Devaux C et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol.8 (9), 1167–1181 (2012).
  • Libutti SK Paciotti GF Byrnes AA et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer. Res.16 (24), 6139–6149 (2010).
  • Mogosanu GD Grumezescu AM Bejenaru C Bejenaru LE . Polymeric protective agents for nanoparticles in drug delivery and targeting. Int. J. Pharm.510 (2), 419–429 (2016).
  • Joh DY Kao GD Murty S et al. Theranostic gold nanoparticles modified for durable systemic circulation effectively and safely enhance the radiation therapy of human sarcoma cells and tumors. Transl. Oncol.6 (6), 722–731 (2013).
  • Brown SD Nativo P Smith JA et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc.132 (13), 4678–4684 (2010).
  • Gibson JD Khanal BP Zubarev ER . Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc.129 (37), 11653–11661 (2007).
  • Setua S Ouberai M Piccirillo SG Watts C Welland M . Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale6 (18), 10865–10873 (2014).
  • Cui T Liang JJ Chen H et al. Performance of doxorubicin-conjugated gold nanoparticles: regulation of drug location. ACS Appl. Mater. Interfaces. doi:10.1021/acsami.6b16669 (2017) ( Epub ahead of print).
  • Chen Y Song G Dong Z et al. Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small13 (8), (2017).
  • Min Y Caster JM Eblan MJ Wang AZ . Clinical translation of nanomedicine. Chem. Rev.115 (19), 11147–11190 (2015).
  • Fang M Peng CW Pang DW Li Y . Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol. Med.9 (3), 151–163 (2012).
  • Cole LE Ross RD Tilley JM Vargo-Gogola T Roeder RK . Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomed. (Lond.)10 (2), 321–341 (2015).
  • Sancey L Lux F Kotb S et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br. J. Radiol.87 (1041), 20140134 (2014).
  • Yao VJ D'angelo S Butler KS et al. Ligand-targeted theranostic nanomedicines against cancer. J. Control. Rel.240, 267–286 (2016).
  • Razi Soofiyani S Baradaran B Lotfipour F Kazemi T Mohammadnejad L . Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv. Pharm. Bull.3 (2), 249–255 (2013).
  • Keles E Song Y Du D Dong WJ Lin Y . Recent progress in nanomaterials for gene delivery applications. Biomater. Sci.4 (9), 1291–1309 (2016).
  • Schultheis B Strumberg D Santel A et al. First-in-human Phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol.32 (36), 4141–4148 (2014).
  • Yoo GH Hung MC Lopez-Berestein G et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin. Cancer Res.7 (5), 1237–1245 (2001).
  • Pirollo KF Nemunaitis J Leung PK Nunan R Adams J Chang EH . Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a Phase 1b study. Mol. Ther.24 (9), 1697–1706 (2016).
  • Senzer N Nemunaitis J Nemunaitis D et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther.21 (5), 1096–1103 (2013).
  • Golan T Khvalevsky EZ Hubert A et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget6 (27), 24560–24570 (2015).
  • Yang Y Li J Liu F Huang L . Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Mol. Ther.20 (3), 609–615 (2012).
  • Kim SS Rait A Kim E Pirollo KF Chang EH . A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine11 (2), 301–311 (2015).
  • Camp ER Wang C Little EC et al. Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther.20 (4), 222–228 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.