89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evidence of size-dependent Effect of Silica micro- and nano-particles on Basal and Specialized Monocyte Functions

, , , , , & show all
Pages 1035-1049 | Received 11 Apr 2017, Accepted 15 Jun 2017, Published online: 10 Nov 2017

References

  • Wang X Ahmed NB Alvarez GS et al. Sol-gel encapsulation of biomolecules and cells for medicinal applications. Curr. Topics med. Chem.15 (3), 223–244 (2015).
  • Johnson NR Wang Y . Drug delivery systems for wound healing. Curr. Pharm. Biotechnol.16 (7), 621–629 (2015).
  • D'este M Eglin D Alini M Kyllönen L . Bone regeneration with biomaterials and active molecules delivery. Curr. Pharm. Biotechnol.16 (7), 582–605 (2015).
  • Baeza A Manzano M Colilla M Vallet-Regí M . Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomater. Sci.4 (5), 803–813 (2016).
  • Martínez-Carmona M Colilla M Vallet-Regí M . Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials5 (4), 1906–1937 (2015).
  • Vallet-Regí M Ruiz-Hernández E González B Baeza A . Design of smart nanomaterials for drug and gene delivery. J. Biomater. Tissue Eng.1 (1), 6–29 (2011).
  • Pina S Oliveira JM Reis RL . Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv. Mater.27 (7), 1143–1169 (2015).
  • Hélary C Desimone MF . Recent advances in biomaterials for tissue engineering and controlled drug delivery. Curr. Pharm. Biotechnol.16 (7), 635–645 (2015).
  • Chen Y Chen H Ma M et al. Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/hydrophobic anticancer drug delivery. J. Mater. Chem.21 (14), 5290–5298 (2011).
  • Song M Song J Ning A et al. Feasibility study of silica sol as the carrier of a hydrophobic drug in aqueous solution using enrofloxacin as the model. Mater. Sci. Eng. C30 (1), 58–61 (2010).
  • Du L Liao S Khatib HA Stoddart JF Zink JI . Controlled-access hollow mechanized silica nanocontainers. J. Am. Chem. Soc.131 (42), 15136–15142 (2009).
  • Liu Y Lou C Yang H Shi M Miyoshi H . Silica nanoparticles as promising drug/gene delivery carriers and fluorescent nanoprobes: recent advances. Curr. Cancer Drug Targ.11 (2), 156–163 (2011).
  • Alvarez GS Alvarez Echazú MI Olivetti CE Desimone MF . Synthesis and characterization of ibandronate-loaded silica nanoparticles and collagen nanocomposites. Curr. Pharm. Biotechnol.16 (7), 661–667 (2015).
  • Alvarez GS Hélary C Mebert AM Wang X Coradin T Desimone MF . Antibiotic-loaded silica nanoparticle-collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J. Mater. Chem. B2 (29), 4660–4670 (2014).
  • Mebert AM Aimé C Alvarez GS et al. Silica core-shell particles for the dual delivery of gentamicin and rifamycin antibiotics. J. Mater. Chem. B4 (18), 3135–3144 (2016).
  • Voisin H Aimé C Coradin T . Understanding and tuning bioinorganic interfaces for the design of bionanocomposites. Eur. J. Inorg. Chem.2015 (27), 4463–4480 (2015).
  • Du X He J . Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications. Nanoscale3 (10), 3984–4002 (2011).
  • Coradin T Boissière M Livage J . Sol-gel chemistry in medicinal science. Curr. Med. Chem.13 (1), 99–108 (2006).
  • Hudson SP Padera RF Langer R Kohane DS . The biocompatibility of mesoporous silicates. Biomaterials29 (30), 4045–4055 (2008).
  • Niu Y Yu M Zhang J et al. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B3 (43), 8477–8485 (2015).
  • Foglia ML Alvarez GS Catalano PN et al. Recent patents on the synthesis and application of silica nanoparticles for drug delivery. Recent Pat. Biotechnol.5 (1), 54–61 (2011).
  • Heinemann S Coradin T Desimone MF . Bio-inspired silica-collagen materials: applications and perspectives in the medical field. Biomater. Sci.1 (7), 688–702 (2013).
  • Qu Q Ma X Zhao Y . Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale7 (40), 16677–16686 (2015).
  • Dai L Zhang Q Shen X et al. A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy. J. Mater. Chem. B4 (26), 4594–4604 (2016).
  • Hu JJ Liu LH Li ZY Zhuo RX Zhang XZ . MMP-responsive theranostic nanoplatform based on mesoporous silica nanoparticles for tumor imaging and targeted drug delivery. J. Mater. Chem. B4 (11), 1932–1940 (2016).
  • Mebert AM Camporotondi DE Foglia ML et al. Controlling the interaction between cells and silica nanoparticles. J. Biomater. Tissue Eng.3 (1), 108–121 (2013).
  • Popat A Hartono SB Stahr F Liu J Qiao SZ Qing Lu G . Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation and delivery carriers. Nanoscale3 (7), 2801–2818 (2011).
  • Mihalache R Verbeek J Graczyk H Murashov V Broekhuizen PV . Occupational exposure limits for manufactured nanomaterials: a systematic review. Nanotoxicol. doi:10.1080/17435390.2016.1262920, 1–35 (2016) ( Epub ahead of print).
  • Mody KT Popat A Mahony D Cavallaro AS Yu C Mitter N . Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale5 (12), 5167–5179 (2013).
  • Deville S Baré B Piella J et al. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation. Nanotoxicol.10 (10), 1395–1403 (2016).
  • O'keefe SJ Feltis BN Piva TJ Turney TW Wright PFA . ZnO nanoparticles and organic chemical UV-filters are equally well-tolerated by human immune cells. Nanotoxicol.10 (9), 1287–1296 (2016).
  • Demuth P Hurley M Wu C Galanie S Zachariah MR Deshong P . Mesoscale porous silica as drug delivery vehicles: synthesis, characterization and pH-sensitive release profiles. Micropor. Mesopor. Mater.141 (1–3), 128–134 (2011).
  • Heidegger S Go Schmidt A et al. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale8 (2), 938–948 (2016).
  • Carvalho LV Ruiz RDC Scaramuzzi K et al. Immunological parameters related to the adjuvant effect of the ordered mesoporous silica SBA-15. Vaccine28 (50), 7829–7836 (2010).
  • Mercuri LP Carvalho LV Lima FA et al. Ordered mesoporous silica SBA-15: a new effective adjuvant to induce antibody response. Small2 (2), 254–256 (2006).
  • Berntsen P Park CY Rothen-Rutishauser B et al. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J. Royal Soc. Interf.7 (Suppl. 3), S331–S340 (2010).
  • Fadeel B Garcia-Bennett AE . Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev.62 (3), 362–374 (2010).
  • Nel A Xia T Mädler L Li N . Toxic potential of materials at the nanolevel. Science311 (5761), 622–627 (2006).
  • Wittmaack K . In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?Environ. Health Perspect.115 (2), 187–194 (2007).
  • Mody KT Mahony D Zhang J et al. Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials35 (37), 9972–9983 (2014).
  • Stöber W Fink A Bohn E . Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci.26 (1), 62–69 (1968).
  • Thomassen LCJ Aerts A Rabolli V et al. Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir26 (1), 328–335 (2010).
  • De Marzi MC Todone M Ganem MB et al. Peptidoglycan recognition protein–peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology145 (3), 429–442 (2015).
  • Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth.65 (1), 55–63 (1983).
  • Fedeli C Selvestrel F Tavano R Segat D Mancin F Papini E . Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes. Nanomedicine8 (7), 1101–1126 (2012).
  • Liu X Xue Y Ding T Sun J . Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions. Particle Fibre Toxicol.18 (9), 36 (2012).
  • Fedeli C Segat D Tavano R et al. Variations of the corona HDL: albumin ratio determine distinct effects of amorphous SiO2 nanoparticles on monocytes and macrophages in serum. Nanomedicine9 (16), 2481–2497 (2014).
  • Fedeli C Segat D Tavano R et al. The functional dissection of the plasma corona of SiO2-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Nanoscale7 (42), 17710–17728 (2015).
  • Uto T Akagi T Yoshinaga K Toyama M Akashi M Baba M . The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterials32 (22), 5206–5212 (2011).
  • Look M Bandyopadhyay A Blum JS Fahmy TM . Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv. Drug Deliv. Rev.62 (4–5), 378–393 (2010).
  • Winter M Beer H-D Hornung V Krämer U Schins RPF Förster I . Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology5 (3), 326–340 (2011).
  • Kohrgruber N Halanek N Gröger M et al. Survival, maturation and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J. Immunol.163 (6), 3250–3259 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.