424
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Bacterial Nanocellulose: The Future of Controlled Drug Delivery?

, &
Pages 753-761 | Received 03 May 2017, Accepted 14 Jun 2017, Published online: 21 Aug 2017

References

  • Klemm D Kramer F Moritz S et al. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed.50 (24), 5438–5466 (2011).
  • Duran N Lemes AP Seabra AB . Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent. Pat. Nanotech.6 (1), 16–28 (2012).
  • Schlufter K Schmauder H-P Dorn S Heinze T . Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-Butyl-3-methylimidazolium chloride. Macromol. Rapid. Comm.27 (19), 1670–1676 (2006).
  • Barud HS Ribeiro CA Crespi MS et al. Thermal characterization of bacterial cellulose–phosphate composite membranes. J. Therm. Anal. Calorim.87 (3), 815–818 (2007).
  • Lin N Dufresne A . Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J.59, 302–325 (2014).
  • Jeong SI Lee SE Yang H Jin Y-H Park C-S Park YS . Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol.6 (4), 370–377 (2010).
  • Helenius G Backdahl H Bodin A Nannmark U Gatenholm P Risberg B . In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A.76 (2), 431–438 (2006).
  • Schumann DA Wippermann J Klemm DO et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose16 (5), 877–885 (2009).
  • Almeida IF Pereira T Silva NHCS et al. Bacterial cellulose membranes as drug-delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm.86 (3), 332–336 (2014).
  • Frost & Sullivan . Emerging applications of nanocellulose technology. https://store.frost.com/emerging-applications-of-nanocellulose-technology.html.
  • Mosti G Mattaliano V Schmitz M . New antimicrobial wound dressing with polyhexanide Suprasorb® X + PHMB, first in vitro and clinical results. Presented at : Annual Congress of the German Society for Wound Healing and Wound Care. Berlin, Germany, 9–10 March 2007.
  • Bruckner M Schwarz C Otto F Heillinger J Wild T . Evaluation of cellulose and polyhexamethylene biguanide (Suprasorb® X+PHMB) in therapy of infected wounds. EWMA J. (Suppl.)8 (2), 54 (2008).
  • Bowil Biotech Sp. z o.o . www.bowil.pl.
  • Silva NHCS Rodrigues AF Almeida IF et al. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd. Polym.106, 264–269 (2014).
  • Moritz S Wiegand C Wesarg F et al. Active wound dressings based on bacterial nanocellulose as drug-delivery system for octenidine. Int. J. Pharm.471 (1–2), 45–55 (2014).
  • Trovatti E Freire CS Pinto PC et al. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int. J. Pharm.435 (1), 83–87 (2012).
  • Ullah H Santos HA Khan T . Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose23 (4), 2291–2314 (2016).
  • Wiegand C Moritz S Hessler N et al. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med.26 (10), 245 (2015).
  • Ahmad N Amin MCIM Mahali SM Ismail I Chuang VTG . Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol. Pharm.11 (11), 4130–4142 (2014).
  • Müller A Ni Z Hessler N et al. The biopolymer bacterial nanocellulose as drug-delivery system: investigation of drug loading and release using the model protein albumin. J. Pharm. Sci.102 (2), 579–592 (2013).
  • Sampaio LMP Padrão J Faria J et al. Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohyd. Polym.145, 1–12 (2016).
  • Wu S-C Wu S-M Su F-M . Novel process for immobilizing an enzyme on a bacterial cellulose membrane through repeated absorption. J. Chem. Technol. Biotechnol.92 (1), 109–114 (2017).
  • Ullah H Badshah M Mäkilä E et al. Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose1–10 (2017).
  • Huang L Chen X Nguyen TX Tang H Zhang L Yang G . Nano-cellulose 3D-networks as controlled-release drug carriers. J. Mater. Chem. B1 (23), 2976–2984 (2013).
  • Yoshino A Tabuchi M Uo M et al. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater.9 (4), 6116–6122 (2013).
  • Rouabhia M Asselin J Tazi N Messaddeq Y Levinson D Zhang Z . Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl. Mater. Inter.6 (3), 1439–1446 (2014).
  • Liyaskina E Revin V Paramonova E et al. Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J. Phys. Conf. Ser.784 (1), 012034 (2017).
  • Shao W Liu H Wang S et al. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohyd. Polym.145, 114–120 (2016).
  • Shi X Zheng Y Wang G Lin Q Fan J . pH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv.4 (87), 47056–47065 (2014).
  • Trovatti E Silva NH Duarte IF et al. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules12 (11), 4162–4168 (2011).
  • Cacicedo ML Cesca K Bosio VE Porto LM Castro GR . Self-assembly of carrageenin–CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery. J. Appl. Biomed.13 (3), 239–248 (2015).
  • Müller A Wesarg F Hessler N Müller FA Kralisch D Fischer D . Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique. Carbohyd. Polym.106, 410–413 (2014).
  • Mohite BV Suryawanshi RK Patil SV . Study on the drug loading and release potential of bacterial cellulose. Cell. Chem. Technol.50 (2), 219–223 (2016).
  • Alkhatib Y Dewaldt M Moritz S Nitzsche R Kralisch D Fischer D . Controlled extended octenidine release from a bacterial nanocellulose/poloxamer hybrid system. Eur. J. Pharm. Biopharm.112, 164–176 (2017).
  • Aramwit P Bang N . The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol.14, 104 (2014).
  • Cacicedo ML León IE Gonzalez JS Porto LM Alvarez VA Castro GR . Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloid. Surface. B140, 421–429 (2016).
  • Li J Wan Y Li L Liang H Wang J . Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C29 (5), 1635–1642 (2009).
  • Hu W Chen S Yang J Li Z Wang H . Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd. Polym.101, 1043–1060 (2014).
  • Alosmanov R Wolski K Zapotoczny S . Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose24 (1), 285–293 (2017).
  • Pavaloiu R-D Stoica-Guzun A Dobre T . Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. U.P.B. Sci. Bull. Ser. B77 (1), 53–62 (2015).
  • Pavaloiu R-D Stoica-Guzun A Stroescu M Jinga SI Dobre T . Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int. J. Biol. Macromol.68, 117–124 (2014).
  • Numata Y Mazzarino L Borsali R . A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int. J. Pharm.486 (1–2), 217–225 (2015).
  • Luo H Ao H Li G et al. Bacterial cellulose/graphene oxide nanocomposite as a novel drug-delivery system. Curr. Appl. Phys.17 (2), 249–254 (2017).
  • Sukhtezari S Almasi H Pirsa S Zandi M Pirouzifard M . Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss extract. Carbohyd. Polym.156, 340–350 (2017).
  • Berndt S Wesarg F Wiegand C Kralisch D Müller FA . Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose20 (2), 771–783 (2013).
  • Khalid A Khan R Ul-Islam M Khan T Wahid F . Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohyd. Polym.164, 214–221 (2017).
  • Scholz P Müller A Heßler N Kralisch D Fischer D . Freeze dried bacterial nanocellulose as potential drug-delivery system for peroral application of sensitive drugs. Presented at : CRS Local German Chapter Annual Meeting. Würzburg, Germany, 29–30 March 2012.
  • Phisalaphong M Tran T-K Taokaew S et al. Nata de coco industry in Vietnam, Thailand, and Indonesia. In : Bacterial Nanocellulose–From Biotechnology to Bio-Economy. GamaMDouradoFBieleckiS ( Eds). Elsevier, Amsterdam, The Netherlands, 231–236 (2016).
  • Piazodo MES . Nata de coco industry in the Philippines. In : Bacterial Nanocellulose–From Biotechnology to Bio-Economy. GamaMDouradoFBieleckiS ( Eds). Elsevier, Amsterdam, The Netherlands, 215–229 (2016).
  • Kralisch D Hessler N Klemm D Erdmann R Schmidt W . White biotechnology for cellulose manufacturing–the HoLiR concept. Biotechnol. Bioeng.105 (4), 740–747 (2010).
  • Wu SC Li MH . Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J. Biosci. Bioeng.120 (4), 444–449 (2015).
  • Lee KY Buldum G Mantalaris A Bismarck A . More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol. Biosci.14 (1), 10–32 (2014).
  • Zeng M Laromaine A Roig A . Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose21 (6), 4455–4469 (2014).
  • Qiu Y Qiu L Cui J Wei Q . Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater. Sci. Eng. C. Mater. Biol. Appl.59, 303–309 (2016).
  • Müller A Zink M Hessler N et al. Bacterial nanocellulose with a shape-memory effect as potential drug-delivery system. RSC Adv.4 (100), 57173–57184 (2014).
  • Kaplan E Ince T Yorulmaz E Yener F Harputlu E Laçin NT . Controlled delivery of ampicillin and gentamycin from cellulose hydrogels and their antibacterial efficiency. J. Biomater. Tiss. Eng.4 (7), 543–549 (547), (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.