1,679
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Autonomous self-navigating drug-delivery vehicles: From Science Fiction to Reality

Pages 1063-1075 | Received 29 Jul 2017, Accepted 07 Sep 2017, Published online: 10 Nov 2017

References

  • Shi J Kantoff PW Wooster R Farokhzad OC . Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer17 (1), 20–37 (2017).
  • Danhier F Feron O Preat V . To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Rel.148 (2), 135–146 (2010).
  • Danhier F . To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine?J. Control. Rel.244, 108–121 (2016).
  • Pasqualini R Ruoslahti E . Organ targeting in vivo using phage display peptide libraries. Nature380 (6572), 364–366 (1996).
  • Teesalu T Sugahara KN Ruoslahti E . Mapping of vascular zip codes by phage display. In : Methods in Enzymology: Protein Engineering for Therapeutics, Volume 203, Pt B. WittrupKDVerdineGL ( Eds). Elsevier Academic Press Inc., CA, USA, 35–56 (2012).
  • Ruoslahti E Bhatia SN Sailor MJ . Targeting of drugs and nanoparticles to tumors. J. Cell Biol.188 (6), 759–768 (2010).
  • Ruoslahti E . Drug targeting to specific vascular sites. Drug Discov. Today7 (22), 1138–1143 (2002).
  • Arap W Kolonin MG Trepel M et al. Steps toward mapping the human vasculature by phage display. Nat. Med.8 (2), 121–127 (2002).
  • Kolonin M Pasqualini R Arap W . Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol.5 (3), 308–313 (2001).
  • Kolonin MG Sun J Do KA et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J.20 (7), 979–981 (2006).
  • Kwon IK Lee SC Han B Park K . Analysis on the current status of targeted drug delivery to tumors. J. Control Rel.164 (2), 108–114 (2012).
  • Wilhelm S Tavares AJ Dai Q et al. Analysis of nanoparticle delivery to tumors. Nature Rev. Mat.1 (5), 12 (2016).
  • Torrice M . Does nanomedicine have a delivery problem?Chem. Eng. News94 (25), 16–19 (2016).
  • Matsumura Y Maeda H . A new concept for macromolecular therapeutics in cancer-chemotherapy–mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res.46 (12), 6387–6392 (1986).
  • Maeda H . Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev.91, 3–6 (2015).
  • Park K . The drug delivery field needs a well-diversified technology portfolio. J. Control Rel.245, 177 (2017).
  • Lammers T Kiessling F Hennink WE Storm G . Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Rel.161 (2), 175–187 (2012).
  • Sagnella SM McCarroll JA Kavallaris M . Drug delivery: beyond active tumot targeting. Nanomedicine10 (6), 1131–1137 (2014).
  • Roy A Li SD . Modifying the tumor microenvironment using nanoparticle therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechno.8 (6), 891–908 (2016).
  • Dai Y Xu C Sun X Chen X . Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumot microenvironment. Chem. Soc. Rev.46 (12), 3830–3852 (2017).
  • Petrenko VA Gillespie JW . Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted ‘magic bullets’ to self-navigated ‘magic missiles’. Exp. Opin. Drug Deliv.14 (3), 373–384 (2017).
  • Petrenko VA Jayanna PK . Phage protein-targeted cancer nanomedicines. FEBS Lett.588 (2), 341–349 (2014).
  • Yao VJ D'Angelo S Butler KS et al. Ligand-targeted theranostic nanomedicines against cancer. J. Control. Rel.240, 267–286 (2016).
  • Murase Y Asai T Katanasaka Y et al. A novel DDS strategy, ‘dual-targeting’, and its application for antineovascular therapy. Cancer Lett.287 (2), 165–171 (2010).
  • Takara K Hatakeyama H Kibria G Ohga N Hida K Harashima H . Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. J. Control. Rel.162 (1), 225–232 (2012).
  • Liu DX Auguste DT . Cancer targeted therapeutics: from molecules to drug delivery vehicles. J. Control. Rel.219, 632–643 (2015).
  • Mei L Fu L Shi KR et al. Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. Int. J. Pharmaceut.468 (1–2), 26–38 (2014).
  • Daquinag AC Dadbin A Snyder B et al. Non-glycanated Decorin is a drug target on human adipose stromal cells. Mol. Ther. Oncolytics6, 1–9 (2017).
  • Adams GP Schier R McCall AM et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res.61 (12), 4750–4755 (2001).
  • Smith GP Petrenko VA . Phage display. Chemical Rev.97 (2), 391–410 (1997).
  • Xue J Zhao Z Zhang L et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nano12 (7), 692–700 (2017).
  • Gross AL Gillespie JW Petrenko VA . Promiscuous tumor targeting phage proteins. Protein Eng. Des. Sel.29 (3), 93–103 (2016).
  • Ruoslahti E . RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol.12, 697–715 (1996).
  • Wu CH Liu IJ Lu RM Wu HC . Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci.23, 14 (2016).
  • Ruoslahti E . Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2016.03.008 (2017) ( Epub ahead of print).
  • Petrenko VA Smith GP Gong X Quinn T . A library of organic landscapes on filamentous phage. Protein Eng.9 (9), 797–801 (1996).
  • Fagbohun OA Bedi D Grabchenko NI Deinnocentes PA Bird RC Petrenko VA . Landscape phages and their fusion proteins targeted to breast cancer cells. Protein Eng. Des. Sel.25 (6), 271–283 (2012).
  • Mongelard F Bouvet P . Nucleolin: a multiFACeTed protein. Trends Cell Biol.17 (2), 80–86 (2007).
  • Koutsioumpa M Papadimitriou E . Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat. Anticancer Drug Discov.9 (2), 137–152 (2014).
  • Wang T Yang S Mei LA et al. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor-specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors. Mol. Cancer Ther.13 (12), 2864–2875 (2014).
  • Wang T Hartner WC Gillespie JW et al. Enhanced tumor delivery and antitumor activity in vivo of liposomal doxorubicin modified with MCF-7-specific phage fusion protein. Nanomedicine10 (2), 421–430 (2014).
  • Zou M Zhang L Xie Y Xu W . NGR-based strategies for targeting delivery of chemotherapeutics to tumor vasculature. Anticancer Agents Med. Chem.12 (3), 239–246 (2012).
  • Gillespie JW Wei L Petrenko VA . Selection of lung cancer-specific landscape phage for targeted drug delivery. Comb. Chem. High Throughput Screen.19 (5), 412–422 (2016).
  • Rajotte D Arap W Hagedorn M Koivunen E Pasqualini R Ruoslahti E . Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest.102 (2), 430–437 (1998).
  • Meszaros B Simon I Dosztanyi Z . Prediction of protein binding regions in disordered proteins. PLoS Comput. Biol.5 (5), 18 (2009).
  • Neduva V Russell RB . Linear motifs: evolutionary interaction switches. FEBS Lett.579 (15), 3342–3345 (2005).
  • Vendruscolo M Paci E Dobson CM Karplus M . Three key residues form a critical contact network in a protein folding transition state. Nature409 (6820), 641–645 (2001).
  • Marvin DA Symmons MF Straus SK . Structure and assembly of filamentous bacteriophages. Prog. Biophys. Mol. Biol.114 (2), 80–122 (2014).
  • Smith GP . Chapter 1. The phage nanoparticle toolkit. In : Phage Nanobiotechnology. The Royal Society of Chemistry, 1–11 (2011).
  • Opella SJ . Chapter 2. The roles of structure, dynamics and assembly in the display of peptides on filamentous bacteriophage. In : Phage Nanobiotechnology. The Royal Society of Chemistry, 12–32 (2011).
  • Makowski L . Chapter 3. Quantitative analysis of peptide libraries. In : Phage Nanobiotechnology. The Royal Society of Chemistry, 33–54 (2011).
  • Olofsson L Ankarloo J Andersson PO Nicholls IA . Filamentous bacteriophage stability in non-aqueous media. Chem. Biol.8 (7), 661–671 (2001).
  • Holliger P Riechmann L Williams RL . Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J. Mol. Biol.288 (4), 649–657 (1999).
  • Brigati JR Petrenko VA . Thermostability of landscape phage probes. Anal. Bioanal. Chem.382 (6), 1346–1350 (2005).
  • Molenaar TJ Michon I de Haas SA van Berkel TJ Kuiper J Biessen EA . Uptake and processing of modified bacteriophage M13 in mice: implications for phage display. Virology293 (1), 182–191 (2002).
  • Yip YL Hawkins NJ Smith G Ward RL . Biodistribution of filamentous phage-Fab in nude mice. J. Immunol. Methods225 (1–2), 171–178 (1999).
  • Zou J Dickerson MT Owen NK Landon LA Deutscher SL . Biodistribution of filamentous phage peptide libraries in mice. Mol. Biol. Rep.31 (2), 121–129 (2004).
  • Pasqualini R Koivunen E Ruoslahti E . Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol.15 (6), 542–546 (1997).
  • Clough G . Relationship between microvascular permeability and ultrastructure. Prog. Biophys. Mol. Biol.55 (1), 47–69 (1991).
  • Babickova J Tothova L Boor P Celec P . In vivo phage display–a discovery tool in molecular biomedicine. Biotechnol Adv.31 (8), 1247–1259 (2013).
  • Krag DN Fuller SP Oligino L et al. Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother. Pharmacol.50 (4), 325–332 (2002).
  • Krag DN Shukla GS Shen GP et al. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res.66 (15), 7724–7733 (2006).
  • Dias-Neto E Nunes DN Giordano RJ et al. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS ONE4 (12), e8338 (2009).
  • Staquicini FI Cardo-Vila M Kolonin MG et al. Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients. Proc. Natl Acad. Sci. USA108 (46), 18637–18642 (2011).
  • Scott JK Smith GP . Searching for peptide ligands with an epitope library. Science249 (4967), 386–390 (1990).
  • Yao VJ Ozawa MG Trepel M Arap W McDonald DM Pasqualini R . Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am. J. Pathol.166 (2), 625–636 (2005).
  • Folkman J . Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285 (21), 1182–1186 (1971).
  • Schluesener HJ Xianglin T . Selection of recombinant phages binding to pathological endothelial and tumor cells of rat glioblastoma by in-vivo display. J. Neurol. Sci.224 (1–2), 77–82 (2004).
  • Landon LA Deutscher SL . Combinatorial discovery of tumor targeting peptides using phage display. J. Cell Biochem.90 (3), 509–517 (2003).
  • Petrenko VA Smith GP . Vectors and modes of display. In : Phage Display in Biotechnology and Drug Discovery. SachdevSSidhuCRG ( Eds). CRC Press, Taylor & Francis Group, Boca Raton, London, New York (2015).
  • Qi H Lu H Qiu HJ Petrenko V Liu A . Phagemid vectors for phage display: properties, characteristics and construction. J. Mol. Biol.417 (3), 129–143 (2012).
  • Petrenko VA Jayanna PK . Phage-mediated drug delivery. In : Phage Nanobiotechnology. PetrenkoVASmithGP ( Eds). RSC Publishing, 55–82 (2011).
  • Gillespie JW Gross AL Puzyrev AT Bedi D Petrenko VA . Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins. Front. Microbiol.6, 628 (2015).
  • Knez K Noppe W Geukens N et al. Affinity comparison of p3 and p8 peptide displaying bacteriophages using surface plasmon resonance. Anal. Chem.85 (21), 10075–10082 (2013).
  • Xue J Zhao Z Zhang L et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol.12 (7), 692–700 (2017).
  • Jayanna PK Torchilin VP Petrenko VA . Liposomes targeted by fusion phage proteins. Nanomedicine5 (1), 83–89 (2009).
  • Opella SJ . The roles of structure, dynamics and assembly in the display of peptides on filamentous bacteriophage. In : Phage Nanobiotechnology. PetrenkoVASmithGP ( Eds). RSC Publishing, 12–32 (2011).
  • Vos WL Nazarov PV Koehorst RB Spruijt RB Hemminga MA . From ‘I’ to ‘L’ and back again: the odyssey of membrane-bound M13 protein. Trends Biochem. Sci.34 (5), 249–255 (2009).
  • Bedi D Gillespie JW Petrenko VA Jr et al. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol. Pharm.10 (2), 551–559 (2013).
  • Wang T Yang S Petrenko VA Torchilin VP . Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific phage fusion coat protein. Mol. Pharm.7 (4), 1149–1158 (2010).
  • Sanchez-Purra M Ramos V Petrenko VA Torchilin VP Borros S . Double-targeted polymersomes and liposomes for multiple barrier crossing. Int. J. Pharm.511 (2), 946–956 (2016).
  • Minenkova OO Ilyichev AA Kishchenko GP Petrenko VA . Design of specific immunogens using filamentous phage as the carrier. Gene128 (1), 85–88 (1993).
  • Petrenko VA Smith GP Mazooji MM Quinn T . Alpha-helically constrained phage display library. Protein Eng.15 (11), 943–950 (2002).
  • Kuzmicheva GA Jayanna PK Sorokulova IB Petrenko VA . Diversity and censoring of landscape phage libraries. Protein Eng. Design & Selection22 (1), 9–18 (2009).
  • Tomkins MR Liao DS Docoslis A . Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy. Sensors (Basel)15 (1), 1047–1059 (2015).
  • Yang SH Chung W-J McFarland S Lee S-W . Assembly of bacteriophage into functional materials. Chem. Record13, 43–59 (2013).
  • Gillespie JW Petrenko VA . Molecular toolkits for engineering of self-navigating drug delivery vehicles. In : Conference: TechConnect World Innovation Conference & Expo TechConnect Briefs 2017, at Technical Proceedings of the TechConnect World Innovation Conference & Expo TechConnect Briefs 2017. TechConnect.org, ISBN 978–0–9988782–0–1, TechConnect, Gaylord National Hotel & Convention Center, Washington, DC (2017).
  • Petrenko VA Gillespie JW . Self-navigating drug delivery nanovehicles driven by polyvalent multifunctional phages and their promiscuous proteins. In : Technical Proceedings of the 2017 TechConnect World, including the Nanotech 2017 Conference. TechConnect, Gaylord National Hotel & Convention Center, Washington, DC (2017).
  • Petrenko VA Vodyanoy VJ . Phage display for detection of biological threat agents. J. Microbiol. Methods53 (2), 253–262 (2003).
  • Wang T Petrenko VA Torchilin VP . Paclitaxel-loaded polymeric micelles modified with MCF-7 cell-specific phage protein: enhanced binding to target cancer cells and increased cytotoxicity. Mol. Pharm.7 (4), 1007–1014 (2010).
  • Papavoine CH Christiaans BE Folmer RH Konings RN Hilbers CW . Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues. J. Mol. Biol.282 (2), 401–419 (1998).