261
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Topical Nano drug-delivery Systems for the Anterior Ocular Segment

, &
Pages 137-153 | Received 08 Aug 2017, Accepted 23 Nov 2017, Published online: 12 Jan 2018

References

  • Nateyeinstitute . Statistics and data (2017).
  • Perlman JI . Ocular disease: mechanisms and management. JAMA306 (1), 101–101 (2011).
  • Patil A Majumdar S . Echinocandins in ocular therapeutics. J. Ocul. Pharmacol. Ther.33 (5), 340–352 (2017).
  • Patil A Lakhani P Majumdar S . Current perspectives on natamycin in ocular fungal infections. J. Drug Deliv. Sci. Technol.41, 206–212 (2017).
  • Taskar P Tatke A Majumdar S . Advances in the use of prodrugs for drug delivery to the eye. Expert Opin. Drug Deliv.14 (1), 49–63 (2017).
  • WHO . Causes of blindness and visual impairment (2017). www.who.int/blindness/causes/en/.
  • American Academy of Ophthalmology . Eye health statistics (2017). www.aao.org/newsroom/eye-health-statistics.
  • WHO . Priority eye diseases (2014). www.who.int/blindness/causes/priority/en/index1.html.
  • Patil A Singh S Opere C Dash A . Sustained-release delivery system of a slow hydrogen sulfide donor, GYY 4137, for potential application in glaucoma. AAPS PharmSciTech18 (6), 2291–2302 (2017).
  • Patel A Cholkar K Agrahari V Mitra AK . Ocular drug delivery systems: an overview. World J. Pharmacol.2 (2), 47–64 (2013).
  • Kim NJ Harris A Elghouche A Gama W Siesky B . Ocular permeation enhancers. In : Nano-Biomaterials For Ophthalmic Drug Delivery. PathakYSutariyaVHiraniAA ( Eds). Springer International Publishing Cham, Switzerland, 177–209 (2016).
  • Kaur IP Smitha R . Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm.28 (4), 353–369 (2002).
  • Le Bourlais C Acar L Zia H Sado PA Needham T Leverge R . Ophthalmic drug delivery systems–recent advances. Prog. Retin. Eye Res.17 (1), 33–58 (1998).
  • Huang HS Schoenwald RD Lach JL . Corneal penetration behavior of β-blocking agents II: assessment of barrier contributions. J. Pharm. Sci.72 (11), 1272–1279 (1983).
  • Levin L Nilsson S Hoeve JV Wu S Kaufman P Alm A . Adler's Physiology Of The Eye: Clinical Application (11th Edition). Elsevier, NY, USA (2011).
  • Mitra AK . Fundamental considerations. In : Ophthalmic Drug Delivery Systems. Taylor & Francis, FL, USA, 1–60 (2003).
  • Mitra AK . Ocular Transporters and Receptors: Their Role in Drug Delivery. Woodhead publishing, PA, USA (2013).
  • Gaudana R Ananthula HK Parenky A Mitra AK . Ocular drug delivery. AAPS J.12 (3), 348–360 (2010).
  • Ghate D Edelhauser HF . Ocular drug delivery. Expert Opin. Drug Deliv.3 (2), 275–287 (2006).
  • Schoenwald RD . Ocular drug delivery. Pharmacokinetic considerations. Clin. Pharmacokinet.18 (4), 255–269 (1990).
  • John Lang RR Rajni Jani . Opthalmic Preparations. In : Remington: the Science And Practice Of Pharmacy. RemingtonJP ( Ed.). Lippincott Williams & Wilkins, MD, USA, 873–900 (2006).
  • Dursun D Monroy D Knighton R et al. The effects of experimental tear film removal on corneal surface regularity and barrier function. Ophthalmology107 (9), 1754–1760 (2000).
  • Nejima R Miyata K Tanabe T et al. Corneal barrier function, tear film stability, and corneal sensation after photorefractive keratectomy and laser in situ keratomileusis. Am. J. Ophthalmol.139 (1), 64–71 (2005).
  • Chrai SS Makoid MC Eriksen SP Robinson JR . Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. J. Pharm. Sci.63 (3), 333–338 (1974).
  • Ahmed I . The noncorneal route in ocular drug delivery. In : Ophthalmic Drug Delivery Systems (2nd Edition). CRC Press, NY, USA, 335–363 (2003).
  • Patton TF . Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume. J. Pharm. Sci.66 (7), 1058–1059 (1977).
  • Janssen PT Van Bijsterveld OP . Origin and biosynthesis of human tear fluid proteins. Invest. Ophthalmol. Vis. Sci.24 (5), 623–630 (1983).
  • Svitova TF Lin MC . Tear lipids interfacial rheology: effect of lysozyme and lens care solutions. Optom. Vis. Sci.87 (1), 10–20 (2010).
  • Dey S Mitra AK . Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin. Drug Deliv.2 (2), 201–204 (2005).
  • Dey S Patel J Anand BS et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest. Ophthalmol. Vis. Sci.44 (7), 2909–2918 (2003).
  • Karla PK Earla R Boddu SH Johnston TP Pal D Mitra A . Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr. Eye Res.34 (1), 1–9 (2009).
  • Karla PK Pal D Quinn T Mitra AK . Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int. J. Pharm.336 (1), 12–21 (2007).
  • Wu J Zhang JJ Koppel H Jacob TJ . P-glycoprotein regulates a volume-activated chloride current in bovine non-pigmented ciliary epithelial cells. J. Physiol.491 (Pt 3), 743–755 (1996).
  • Tuft SJ Coster DJ . The corneal endothelium. Eye (Lond.)4 (Pt 3, 3), 389–424 (1990).
  • Saha P Yang JJ Lee VH . Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest. Ophthalmol. Vis. Sci.39 (7), 1221–1226 (1998).
  • Balguri SP Adelli GR Tatke A Janga KY Bhagav P Majumdar S . Melt-cast noninvasive ocular inserts for posterior segment drug delivery. J. Pharm. Sci.106 (12), 3515–3523 (2017).
  • Hamalainen KM Kananen K Auriola S Kontturi K Urtti A . Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest. Ophthalmol. Vis. Sci.38 (3), 627–634 (1997).
  • Ambati J Canakis CS Miller JW et al. Diffusion of high molecular weight compounds through sclera. Invest. Ophthalmol. Vis. Sci.41 (5), 1181–1185 (2000).
  • Cruysberg LPJ Nuijts RMMA Geroski DH Koole LH Hendrikse F Edelhauser HF . In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J. Ocul. Pharmacol. Ther.18 (6), 559–569 (2002).
  • Maurice DM Polgar J . Diffusion across the sclera. Exp. Eye Res.25 (6), 577–582 (1977).
  • Prausnitz MR et al. Schools of Chemical E, Biomedical Engineering GIOTaG . Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci.87 (12), 1479–1488 (2017).
  • Dunlevy JR Rada JA . Interaction of lumican with aggrecan in the aging human sclera. Invest. Ophthalmol. Vis. Sci.45 (11), 3849–3856 (2004).
  • Goldblum D Rohrer K Frueh B Theurillat R Thormann W Zimmerli S . Ocular distribution of intravenously administered lipid formulations of amphotericin B in a rabbit model. Antimicrob. Agents Chemother.46 (12), 3719–3723 (2002).
  • Cohen T Sauvageon-Martre H Brossard D et al. Amphotericin B eye drops as a lipidic emulsion. Int. J. Pharm.137 (2), 249–254 (1996).
  • Barza M Baum J Tremblay C Szoka F D'amico D . Ocular toxicity of intravitreally injected liposomal amphotericin B in rhesus monkeys. Am. J. Ophthalmol.100 (2), 259–263 (1985).
  • Tremblay C Barza M Szoka F Lahav M Baum J . Reduced toxicity of liposome-associated amphotericin B injected intravitreally in rabbits. Invest. Ophthalmol. Vis. Sci.26 (5), 711–718 (1985).
  • Das S Suresh P . Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine7 (2), 242–247 (2011).
  • Das S Suresh P Desmukh R . Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine6 (2), 318–323 (2010).
  • Chhonker Y Prasad Y Chandasana H et al. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int. J. Biol. Macromol.72, 1451–1458 (2015).
  • Bhatta R Chandasana H Chhonker Y et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int. J. Pharm.432 (1), 105–112 (2012).
  • Chandasana H Prasad Y Chhonker Y et al. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency. Int. J. Pharm.477 (1), 317–325 (2014).
  • Paradkar M Parmar M . Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery. J. Drug Deliv. Sci. Technol.39, 113–122 (2017).
  • Silva G Almeida A Fernandes-Cunha G et al. Safety and in vivo release of fluconazole-loaded implants in rabbits’ eyes. J. Drug Deliv. Sci. Technol.35, 323–326 (2016).
  • Fetih G . Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J. Drug Deliv. Sci. Technol.35, 8–15 (2016).
  • Abdelbary G Amin M Zakaria M . Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv.24 (1), 309–319 (2017).
  • Ahmed T Aljaeid B . A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int. J. Nanomedicine12, 1863–1875 (2017).
  • Kakkar S Karuppayil S Raut J et al. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int. J. Pharm.495 (1), 276–289 (2015).
  • Grossman R Lee D . Transscleral and transcorneal iontophoresis of ketoconazole in the rabbit eye. Ophthalmology96 (5), 724–729 (1989).
  • Jaiswal M Kumar M Pathak K . Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B Biointerfaces130, 23–30 (2015).
  • Ahuja M Verma P Bhatia M . Preparation and evaluation of chitosan–itraconazole co-precipitated nanosuspension for ocular delivery. J. Exp. Nanosci.10 (3), 209–221 (2015).
  • Mohanty B Majumdar D Mishra S Panda A Patnaik S . Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm. Dev. Technol.20 (4), 458–464 (2015).
  • Kumar R Sinha V . Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B Biointerfaces117, 82–88 (2014).
  • Kumar R Sinha V . Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm.42 (12), 1956–1967 (2016).
  • De Sa F Taveira S Gelfuso G Lima E Gratieri T . Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B Biointerfaces133, 331–338 (2015).
  • Serrano D Ruiz-Saldana H Molero G Ballesteros M Torrado J . A novel formulation of solubilised amphotericin B designed for ophthalmic use. Int. J. Pharm.437 (1–2), 80–82 (2012).
  • Koontz J Marcy J . Formation of natamycin: cyclodextrin inclusion complexes and their characterization. J. Agric. Food Chem.51 (24), 7106–7110 (2003).
  • Pahuja P Kashyap H Pawar P . Design and evaluation of HP-β-CD based voriconazole formulations for ocular drug delivery. Curr. Drug Deliv.11 (2), 223–232 (2014).
  • Gaudana R Ananthula H Parenky A Mitra A . Ocular drug delivery. AAPS J.12 (3), 348–360 (2010).
  • Baldinger J Doft B Burns S Johnson B . Retinal toxicity of amphotericin B in vitrectomised versus non-vitrectomised eyes. Br. J. Ophthalmol.70, 657–661 (1986).
  • Kaji Y Yamamoto E Hiraoka T Oshika T . Toxicities and pharmacokinetics of subconjunctival injection of liposomal amphotericin B. Graefes Arch. Clin. Exp. Ophthalmol.247 (4), 549–553 (2008).
  • Axelrod A Peyman G Apple D . Toxicity of intravitreal injection of amphotericin B. Am. J. Ophthalmol.76 (4), 578–583 (1973).
  • Cannon J Fiscella R Pattharachayakul S et al. Comparative toxicity and concentrations of intravitreal amphotericin B formulations in a rabbit model. Invest. Ophthalmol. Vis. Sci.44 (5), 2112–2117 (2003).
  • Qu L Li L Xie H . Toxicity and pharmacokinetics of intrastromal injection of amphotericin B in a rabbit model. Curr. Eye Res.39 (4), 340–347 (2013).
  • Müller G Kara-José N De Castro R . Antifungals in eye infections: drugs and routes of administration. Rev. Bras. Oftalmol.72 (2), 132–141 (2013).
  • Thiel M Zinkernagel A Burhenne J Kaufmann C Haefeli W . Voriconazole concentration in human aqueous humor and plasma during topical or combined topical and systemic administration for fungal keratitis. Antimicrob. Agents Chemother.51 (1), 239–244 (2006).
  • Neoh C Daniell M Chen S Stewart K Kong D . Clinical utility of caspofungin eye drops in fungal keratitis. Int. J. Antimicrob. Agents44 (2), 96–104 (2014).
  • Schulman J Peyman G Dietlein J Fiscella R . Ocular toxicity of experimental intravitreal itraconazole. Int. Ophthalmol.15 (1), 21–24 (1991).
  • Ahuja M Dhake A Sharma S Majumdar D . Stability studies on aqueous and oily ophthalmic solutions of diclofenac. Yakugaku Zasshi129 (4), 495–502 (2009).
  • Ganea E Harding JJ . Glutathione-related enzymes and the eye. Curr. Eye Res.31 (1), 1–11 (2006).
  • Vadlapatla RK Vadlapudi AD Pal D Mitra AK . Role of membrane transporters and metabolizing enzymes in ocular drug delivery. Curr. Drug Metab.15 (7), 680–693 (2014).
  • Schwartzman ML Masferrer J Dunn MW Mcgiff JC Abraham NG . Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues. Curr. Eye Res.6 (4), 623–630 (1987).
  • Huang SP Palla S Ruzycki P et al. Aldo-keto reductases in the eye. J. Ophthalmol. 2010, 521204 (2010).
  • Hayman S Kinoshita JH . Isolation and properties of lens aldose reductase. J. Biol. Chem.240 (2), 877–882 (1965).
  • Urtti A . Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev.58 (11), 1131–1135 (2006).
  • Yorio T Clark A Wax MB . General principles and therapeutic targets. In : Ocular Therapeutics: Eye On New Discoveries. Academic Press, NY, USA, 3–94 (2011).
  • Mannermaa E Vellonen KS Urtti A . Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv. Drug Deliv. Rev.58 (11), 1136–1163 (2006).
  • Seyfoddin A Shaw J Al-Kassas R . Solid lipid nanoparticles for ocular drug delivery. Drug Deliv.17 (7), 467–489 (2010).
  • Lindman B Wennerström H . Micelles. In : Micelles. Topics in Chemistry. 87, Springer, Berlin, Heidelberg (1980).
  • Zhang K . Ophthalmic Disease Mechanisms and Drug Discovery. World Scientific, Singapore (2016).
  • Gupta AK Madan S Majumdar DK Maitra A . Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int. J. Pharm.209 (1–2), 1–14 (2000).
  • Liaw J Chang SF Hsiao FC . In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther.8 (13), 999–1004 (2001).
  • Tong YC Chang SF Liu CY Kao WW Huang CH Liaw J . Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J. Gene Med.9 (11), 956–966 (2007).
  • Tong YC Chang SF Kao WW Liu CY Liaw J . Polymeric micelle gene delivery of bcl-xL via eye drop reduced corneal apoptosis following epithelial debridement. J. Control. Release147 (1), 76–83 (2010).
  • Hao J Li SK Kao WW Liu CY . Gene delivery to cornea. Brain Res. Bull.81 (2–3), 256–261 (2010).
  • Tu J Pang H Yan Z Li P . Ocular permeability of pirenzepine hydrochloride enhanced by methoxy poly(ethylene glycol)-poly(D, L-lactide) block copolymer. Drug Dev. Ind. Pharm.33 (10), 1142–1150 (2007).
  • Di Tommaso C Torriglia A Furrer P Behar-Cohen F Gurny R Moller M . Ocular biocompatibility of novel cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int. J. Pharm.416 (2), 515–524 (2011).
  • Di Tommaso C Bourges JL Valamanesh F et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur. J. Pharm. Biopharm.81 (2), 257–264 (2012).
  • Di Tommaso C Valamanesh F Miller F et al. A novel cyclosporin a aqueous formulation for dry eye treatment: in vitro and in vivo evaluation. Invest. Ophthalmol. Vis. Sci.53 (4), 2292–2299 (2012).
  • Pepic I Jalsenjak N Jalsenjak I . Micellar solutions of triblock copolymer surfactants with pilocarpine. Int. J. Pharm.272 (1–2), 57–64 (2004).
  • Taha EI Badran MM El-Anazi MH Bayomi MA El-Bagory IM . Role of Pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin. J. Mol. Liq.199, 251–256 (2014).
  • Alonso MJ Sanchez A . The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol.55 (11), 1451–1463 (2003).
  • Pepic I Hafner A Lovric J Pirkic B Filipovic-Grcic J . A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J. Pharm. Sci.99 (10), 4317–4325 (2010).
  • Civiale C Licciardi M Cavallaro G Giammona G Mazzone MG . Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J. Pharm.378 (1–2), 177–186 (2009).
  • Usui T Sugisaki K Amano S Jang W-D Nishiyama N Kataoka K . New drug delivery for corneal neovascularization using polyion complex micelles. Cornea24 (8 Suppl.), S39–S42 (2005).
  • Benelli U . Systane® lubricant eye drops in the management of ocular dryness. Clin. Ophthalmol.5, 783 (2011).
  • Yingfang F Zhuang B Wang C Xu X Xu W Lv Z . Pimecrolimus micelle exhibits excellent therapeutic effect for Keratoconjunctivitis Sicca. Colloids Surf. B Biointerfaces140, 1–10 (2016).
  • Biswas S Kumari P Lakhani PM Ghosh B . Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci.83, 184–202 (2016).
  • Guo C Zhang Y Yang Z et al. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci. Rep.5 (1), 12968 (2015).
  • Losa C Calvo P Castro E Vila-Jato JL Alonso MJ . Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles. J. Pharm. Pharmacol.43 (8), 548–552 (1991).
  • Musumeci T Bucolo C Carbone C Pignatello R Drago F Puglisi G . Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int. J. Pharm.440 (2), 135–140 (2013).
  • Warsi MH Anwar M Garg V et al. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf. B Biointerfaces122 (122), 423–431 (2014).
  • Tommaso CD Bourges JL Valamanesh F . Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur. J. Pharm. Biopharm.81 (2), 257–264 (2012).
  • Tommaso CD Torriglia A Furrer P . Ocular biocompatibility of novel cyclosporin A formulations based on methoxy poly (ethylene glycol)-hexylsubstituted poly (lactide) micelle carriers. Int. J. Pharm. (2011). doi:10.1016/j.ijpharm.2011.01.004.
  • Tommaso CD Valamanesh F Miller F . A novel cyclosporin A aqueous formulation for dry eye treatment: in vitro and in vivo evaluation novel cyclosporin A aqueous formulation for dry eye. Invest. Ophthalmol. Vis. Sci.53 (4), 2292–2299 (2012).
  • Di Colo G Zambito Y Burgalassi S Nardini I Saettone MF . Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int. J. Pharm.273 (1–2), 37–44 (2004).
  • Li J Li Z Zhou T et al. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int. J. Nanomedicine10, 6027–6037 (2015).
  • Ibrahim SA Li SK . Efficiency of fatty acids as chemical penetration enhancers: mechanisms and structure enhancement relationship. Pharm. Res.27 (1), 115–125 (2010).
  • Das S Chaudhury A . Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech12 (1), 62–76 (2011).
  • Schaeffer HE Krohn DL . Liposomes in topical drug delivery. Invest. Ophthalmol. Vis. Sci.22 (2), 220–227 (1982).
  • Meisner D Pringle J Mezei M . Liposomal ophthalmic drug delivery. III. Pharmacodynamic and biodisposition studies of atropine. Int. J. Pharm.55 (2), 105–113 (1989).
  • Singh K Mezei M . Liposomal ophthalmic drug delivery system I. Triamcinolone acetonide. Int. J. Pharm.16 (3), 339–344 (1983).
  • Singh K Mezei M . Liposomal ophthalmic drug delivery system. II. Dihydrostreptomycin sulfate. Int. J. Pharm.19 (3), 263–269 (1984).
  • Yu S Wang QM Wang X et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int. J. Pharm.480 (1–2), 128–136 (2015).
  • Abdelbary G . Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm. Dev. Technol.16 (1), 44–56 (2011).
  • Kumar R Sinha VR . Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm.42 (12), 1956–1967 (2016).
  • Kalam A Sultana Y Ali A et al. Part II: enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J. Biomed. Mater. Res. A101 (6), 1828–1836 (2013).
  • Liu Z Zhang X Wu H et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm.37 (4), 475–481 (2011).
  • Wang F Chen L Zhang D et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J. Drug Target.22 (9), 849–858 (2014).
  • Li X Nie SF Kong J Li N Ju CY Pan WS . A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int. J. Pharm.363 (1–2), 177–182 (2008).
  • Mehnert W Mader K . Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev.47 (2–3), 165–196 (2001).
  • Sawant KK Dodiya SS . Recent advances and patents on solid lipid nanoparticles. Recent Pat. Drug Deliv. Formul.2 (2), 120–135 (2008).
  • Azhar Shekoufeh Bahari L Hamishehkar H . The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv. Pharm. Bull.6 (2), 143–151 (2016).
  • Baig MS Ahad A Aslam M Imam SS Aqil M Ali A . Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol.85, 258–270 (2016).
  • Balguri SP Adelli GR Majumdar S . Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm.109, 224–235 (2016).
  • Basaran E Demirel M Sirmagul B Yazan Y . Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J. Microencapsul.27 (1), 37–47 (2010).
  • Beloqui A Solinis MA Rodriguez-Gascon A Almeida AJ Preat V . Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine12 (1), 143–161 (2016).
  • Gokce EH Sandri G Bonferoni MC et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm.364 (1), 76–86 (2008).
  • Hippalgaonkar K Adelli GR Hippalgaonkar K Repka MA Majumdar S . Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J. Ocul. Pharmacol. Ther.29 (2), 216–228 (2013).
  • Hu FQ Jiang SP Du YZ Yuan H Ye YQ Zeng S . Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. B Biointerfaces45 (3–4), 167–173 (2005).
  • Kakkar S Karuppayil SM Raut JS et al. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int. J. Pharm.495 (1), 276–289 (2015).
  • Kalam MA Sultana Y Ali A Aqil M Mishra AK Chuttani K . Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J. Drug Target.18 (3), 191–204 (2010).
  • Bhagurkar AM Repka MA Murthy SN . A novel approach for the development of a nanostructured lipid carrier formulation by hot-melt extrusion technology. J. Pharm. Sci.106 (4), 1085–1091 (2017).
  • Cavalli R Gasco MR Chetoni P Burgalassi S Saettone MF . Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm.238 (1), 241–245 (2002).
  • Sandri G Bonferoni MC Gokce EH et al. Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J. Microencapsul.27 (8), 735–746 (2010).
  • Kumar R Sinha VR . Lipid nanocarrier: an efficient approach towards ocular delivery of hydrophilic drug (Valacyclovir). AAPS PharmSciTech18 (3), 884–894 (2017).
  • Sharma AK Sahoo PK Majumdar DK Sharma N Sharma RK Kumar A . Fabrication and evaluation of lipid nanoparticulates for ocular delivery of a COX-2 inhibitor. Drug Deliv.23 (9), 3364–3373 (2016).
  • Shen J Deng Y Jin X Ping Q Su Z Li L . Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: improving in vivo ocular distribution. Int. J. Pharm.402 (1), 248–253 (2010).
  • Balguri SP Adelli GR Janga KY Bhagav P Majumdar S . Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: effect of molecular weight and density of poly (ethylene) glycol. Int. J. Pharm.529 (1–2), 32–43 (2017).
  • Liu R Wang S Sun L et al. A novel cationic nanostructured lipid carrier for improvement of ocular bioavailability: design, optimization, in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol.33, 28–36 (2016).
  • Huang J Peng T Li Y et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech18 (8), 2919–2926 (2017).
  • Karami Z Hamidi M . Cubosomes: remarkable drug delivery potential. Drug Discov. Today21 (5), 789–801 (2016).
  • Li J Wu L Wu W et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int. J. Pharm.455 (1–2), 75–84 (2013).
  • Nagarwal RC Kant S Singh PN Maiti P Pandit JK . Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J. Control. Rel.136 (1), 2–13 (2009).
  • Doktorovova S Kovacevic AB Garcia ML Souto EB . Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm.108, 235–252 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.