109
Views
0
CrossRef citations to date
0
Altmetric
Review

Thiol redox-sensitive Cationic Polymers for Dual Delivery of Drug and Gene

&
Pages 751-773 | Received 12 Jun 2018, Accepted 16 Aug 2018, Published online: 02 Oct 2018

References

  • Langer R . Drug delivery and targeting. Nature392, 5–10 (1998).
  • Soppimath KS Aminabhavi TM Kulkarni AR et al. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Rel.70 (1), 1–20 (2001).
  • Torchilin V . Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng.8, 343–375 (2006).
  • Nori A Kopecek J . Intracellular targeting of polymer-bound drugs for cancer Chemotherapy. Adv. Drug Deliv. Rev.57 (4), 609–636 (2005).
  • Torchilin V . Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm.71 (3), 431–444 (2009).
  • Schafer FQ Buettner GR . Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med.30 (11), 1191–1212 (2001).
  • Go YM Jones DP . Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta.1780 (11), 1273–1290 (2008).
  • Chen H Zhang H McCallum CM et al. Unsaturated cationic ortho esters for endosome permeation in gene delivery. J. Med. Chem.50 (18), 4269–4278 (2007).
  • Dubruel P Schacht E . Vinyl polymers as non-viral gene delivery carriers: current status and prospects. Macromol. Biosci.6 (10), 789–810 (2006).
  • Knorr V Allmendinger L Walker GF . An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjug. Chem.18 (4), 1218–1225 (2007).
  • Jiangbing Z Jie L Christopher JC et al. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater.11 (1), 82–90 (2012).
  • Quan Y Andrew WY Hu Y . PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromolecules11 (8), 1940–1947 (2010).
  • Fenghua M Ru C Chao D Zhiyuan Z . Intracellular drug release nanosystems. Biomaterials15 (10), 436–442 (2012).
  • Fenghua M Wim EH Zhiyuan Z . Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials30 (12), 2180–2198 (2009).
  • Aaron DB Kristi LK . Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug. Chem.22 (10), 1946–1953 (2011).
  • Moriarty SE Jones DP . Extracellular thiols and thiol/disulfide redox in metabolism. Annu. Rev. Nutr.24, 481–509 (2004).
  • Péter N . Kinetics and mechanisms of thiol–disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid. Redox Signal.18 (13), 1623–1641 (2013).
  • Sawant RR Jhaveri AM Torchilin VP . Immunomicelles for advancing personalized therapy. Adv. Drug Deliv. Rev.64 (13), 1436–1446 (2012).
  • Al-Lazikani B Banerji U Workman P . Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol.30 (7), 679–692 (2012).
  • Mohammed S Xiang G . Nonviral gene delivery: principle, limitations, and recent progress. AAPS J.11 (4), 671–682 (2009).
  • Schafer FQ Buettner GR . Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med.30 (11), 1191–1212 (2001).
  • Lu SC . Glutathione synthesis. Biochim. Biophys. Acta1830 (5), 3143–3153 (2013).
  • Jones DP Go YM . Redox compartmentalization and cellular stress. Diabetes Obes. Metab.2, 116–125 (2010).
  • Arunachalam B Phan UT Geuze HJ et al. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferoninducible lysosomal thiol reductase (GILT). Proc. Natl. Acad. Sci. USA97, 745–750 (2000).
  • Saito G Swanson JA Lee KD . Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev.55 (2), 199–215 (2003).
  • Kemp M Go YM Jones DP . Non equilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med.44 (6), 921–937 (2008).
  • Stewart AJ Blindauer CA Berezenko S et al. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS J.272 (2), 353–362 (2005).
  • Giustarini D Milzani A Dalle-Donne I et al. Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells Mol. Dis.40 (2), 174–179 (2008).
  • Giustarini D Dalle-Donne I Lorenzini S et al. Age-related influence on thiol, disulfide, and protein-mixed disulfide levels in human plasma. J. Gerontol. A. Biol. Sci. Med. Sci.61, 1030–1038 (2006).
  • Wilkinson B Gilbert HF . Protein disulfide isomerase. Biochim. Biophys. Acta.1699 (1–2), 35–44 (2004).
  • Young MG Dean PJ . Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med.50 (4), 495–509 (2011).
  • Turell L Radi R Alvarez B . The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic. Biol. Med.65, 244–253 (2013).
  • Na K Sethuraman VT Bae YH . Stimuli-sensitive polymeric micelles as anticancer drug carriers. Anticancer Agents Med. Chem.6 (6), 525–535 (2006).
  • Taghizadeh B Taranejoo S Monemian SA et al. Classification of stimuli-responsive polymers as anticancer drug-delivery systems. Drug Deliv.22 (2), 145–155 (2015).
  • Crucho CI . Stimuli-responsive polymeric nanoparticles for nanomedicine. Chem. Med. Chem.10 (1), 24–38 (2015).
  • Nakayama M Akimoto J Okano T . Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J. Drug Target22 (7), 584–599 (2014).
  • Zhou G Li L Xing J et al. Redox responsive liposomal nanohybrid cerasomes for intracellular drug delivery. Colloids Surf. B Biointerfaces148, 518–525 (2016).
  • Lin Z Torchilin VP . Stimulus-responsive nanopreparations for tumor targeting. Integr. Biol. (Camb.)5 (1), 96–101 (2013).
  • Neu M Germershaus O Mao S et al. Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice. J. Control. Rel.118 (3), 370–380 (2007).
  • Oupicky D Carlisle RC Seymour LW . Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Ther.8 (9), 713–724 (2001).
  • Gina M Gheorghita I Maria VC et al. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol.5, 347–357 (2005).
  • Thorpe PE Wallace PM Knowles PP et al. New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res.47 (22), 5924–5931 (1987).
  • Kellogg BA Garrett L Kovtun Y et al. Disulfide-linked antibody–maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem.22 (4), 717–727 (2011).
  • Brülisauer L Kathriner N Prenrecaj M et al. Tracking the bioreduction of disulfide-containing cationic dendrimers. Angew. Chem. Int. Ed.51 (50), 12454–12458 (2012).
  • Sauer AM Schlossbauer A Ruthardt N et al. Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. Nano Lett.10 (9), 3684–3691 (2010).
  • Giustarini D Milzani A Dalle-Donne I et al. Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells Mol. Dis.40 (2), 174–179 (2008).
  • Pieter V Leonardus JV Johan FJ et al. Disulfide-based poly(amido amine)s for siRNA delivery: effects of structure on siRNA complexation, cellular uptake, gene silencing and toxicity. Pharm. Res.28 (5), 1013–1022 (2011).
  • Lee YT Silpi D Pellois JP . Real-time fluorescence detection of protein transduction into live cells. J. Am. Chem. Soc.130 (8), 2398–2399 (2008).
  • Ma N Li Y Xu H et al. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc.132 (2), 442–443 (2010).
  • Jun C Chao Wu David O . Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules10 (10), 2921–2927 (2009).
  • Mei O Xu LW Rongzuo X et al. Novel biodegradable poly(disulfide amine)s for gene delivery with high efficiency and low cytotoxicity. Bioconjug. Chem.19 (3), 626–633 (2009).
  • Gosselin MA Guo W Lee RJ . Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem.12 (6), 989–994 (2001).
  • Leslie BP . The basics of thiols and cysteine in redox biology and chemistry. Free Radic. Biol. Med.80, 148–157 (2015).
  • Peng Q Hu C Cheng J et al. Influence of disulfide density and molecular weight on disulfide cross-linked polyethylenimine as gene vectors. Bioconjug. Chem.20 (2), 340–346 (2009).
  • Park TG Jeong JH Kim SW . Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev.58 (4), 467–486 (2006).
  • Kim TI Rothmund T Kissel T Kim SW . Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J. Control. Rel.152 (1), 110–119 (2011).
  • Xia W Wang P Lin C et al. Bioreducible polyethylenimine-delivered siRNA targeting human telomerase reverse transcriptase inhibits HepG2 cell growth in vitro and in vivo. J. Control. Rel.157 (3), 427–436 (2012).
  • Lin C Zhong Z Lok MC et al. Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug. Chem.18, 138–145 (2007).
  • Ahmed AE Daniel JS Christopher AA et al. Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials33 (13), 3594–3603 (2012).
  • Hoon JJ Christensen LV Yockman JW et al. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials28 (10), 1912–1917 (2007).
  • Brumbach JH Lin C Yockman J et al. Mixtures of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)-g-poly(ethylene glycol) for improved gene delivery. Bioconjug. Chem.21 (10), 1753–1761 (2010).
  • Ping Y Wu D Kumar JN et al. Redox-responsive hyperbranched poly(amido amine)s with tertiary amino cores for gene delivery. Biomacromolecules14 (6), 2083–2094 (2013).
  • Greenfield L Bloch W Moreland W . Thiol-containing cross-linking agent with enhanced steric hindrance. Bioconjug. Chem.1 (6), 400–410 (1990).
  • Kim TI Lee M Kim SW . A guanidinylated bioreducible polymer with high nuclear localization ability for gene delivery systems. Biomaterials31, 1798–1804 (2010).
  • Yu GS Bae YM Kim JY et al. Amino acid-modified bioreducible poly(amidoamine) dendrimers: synthesis, characterization and in vitro evaluation. Macromol. Res.20, 1156–1161 (2012).
  • Cai X Jin R Wang J et al. Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. ACS Appl. Mater. Interfaces.8 (9), 5821–5832 (2016).
  • Takae S Miyata K Oba M et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc.130, 6001–6009 (2008).
  • Miyata K Kakizawa Y Nishiyama N et al. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J. Control. Rel.109, 15–23 (2005).
  • Matsumoto S Christie RJ Nishiyama N et al. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules10, 119–127 (2009).
  • Tan W Zhang W Strasner A . Tumor-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKLRANK signalling. Nature470, 548–553 (2011).
  • Wu Y Deng J Rychahou PG et al. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell15, 416–428 (2009).
  • Chen CJ Wang JC Zhao EY et al. Self-assembly cationic nanoparticles based on cholesterol-grafted bioreducible poly(amidoamine) for siRNA delivery. Biomaterials34, 5303–5316 (2013).
  • Qi Y Jianan S Zhiwen Z et al. Multifunctional nanoparticles improve therapeutic effect for breast cancer by simultaneously antagonizing multiple mechanisms of multidrug resistance. Biomacromolecules14 (7), 2242–2252 (2013).
  • Nam K Nam HY Kim PH et al. Paclitaxel-conjugated PEG and arginine-grafted bioreducible poly (disulfide amine) micelles for co-delivery of drug and gene. Biomaterials33 (32), 8122–8130 (2012).
  • Christensen LV Chang CW Yockman JW et al. Reducible poly(amido ethylenediamine) for hypoxia-inducible VEGF delivery. J. Control. Rel.118 (2), 254–261 (2007).
  • Nam HY Lee Y Lee M et al. Erythropoietin gene delivery using an arginine-grafted bioreducible polymer system. J. Control. Rel.157 (3), 437–444 (2012).
  • Joo WS Jeong JH Nam K et al. Polymeric delivery of therapeutic RAE-1 plasmid to a pancreatic islets for the prevention of type 1 diabetes. J. Control. Rel.162 (3), 606–611 (2012).
  • Kim PH Lee M Kim SW . Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model. J. Control. Rel.162 (1), 9–18 (2012).
  • Yuanpei L Kai X Wei Z et al. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliv. Rev.66, 58–73 (2014).
  • Debele TA Peng S Tsai HC et al. Drug carrier for photodynamic cancer therapy. Int. J. Mol. Sci.16, 22094–22136 (2015).
  • Lin M Yuyang J Si-Shen F . Star-shaped block polymers as a molecular biomaterial for nanomedicine development. Nanomedicine9 (1), 9–12 (2014).
  • Xu P Yu H Zhang Z et al. Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis. Biomaterials35 (26), 7574–7587 (2014).
  • Gottesman MM . Mechanisms of cancer drug resistance. Annu. Rev. Med.53 (1), 615–627 (2002).
  • Longley DB Johnston PG . Molecular mechanisms of drug resistance. J. Pathol.205 (2), 275–292 (2005).
  • Baguley BC . Multiple drug resistance mechanisms in cancer. Mol. Biotechnol.46 (3), 308–316 (2010).
  • Zhang RX Wong HL Xue HY et al. Nanomedicine of synergistic drug combinations for cancer therapy–strategies and perspectives. J. Control. Rel.240, 489–503 (2016).
  • Ambarish P Ashish K Bhaskar R et al. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy. Cancer Res.74 (3), 675–685 (2014).
  • Chou TC . Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev.58 (3), 621–681 (2006).
  • Zhao L Wientjes WG Au JL . Evaluation of combination chemotherapy: integration of nonlinear regression curve shift, isobologram, and combination index analyses. Clin. Cancer Res.10 (23), 7994–8004 (2004).
  • Chou TC Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul.22, 27–55 (1984).
  • Ya G Yi X Shiyuan L et al. Camptothecin prodrug nanomicelle based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake. J. Biomater. Sci. Polym. Ed.29, 160–180 (2018).
  • Brandon KS Roland WH . Evading the immune response upon in vivo gene therapy with viral vectors. Curr. Opin. Mol. Ther.11 (5), 493–503 (2009).
  • William SM Karoly T . Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther.13 (6), 421–433 (2013).
  • Lin K Zhing G Gao W et al. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta. Pharm. Sin. B5 (3), 169–175 (2015).
  • Saad M Garbuzenko OB Minko T . Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond).3 (6), 761–776 (2008).
  • Song YY Lou B Cheng J et al. Redox-responsive amphipathic dextran nanomicelles for solid tumor therapy. J. Biomed. Nanotechnol.12 (12), 2083–2094 (2016).
  • Chen AM Zhang M Wei D et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small5 (23), 2673–2677 (2009).
  • Du J Lane LA et al. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Rel.219, 205–214 (2016).
  • JoEllyn M Elena B Howard EG . Cell delivery of therapeutic nanoparticles. Prog. Mol. Biol. Transl. Sci.104, 563–601 (2011).
  • Zhan C Wei X Qian J . Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J. Control. Rel.160 (3), 630–636 (2012).
  • Baowei S Arzu C Katarina F et al. Systemic TNFα gene therapy synergizes with liposomal doxorubicin in the treatment of metastatic cancer. Mol. Ther.21 (2), 300–308 (2013).
  • Yin Q Shen J Chen L et al. Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials33 (27), 6495–6506 (2012).
  • Hussain M Beale G Hughes M et al. Co-delivery of an antisense oligonucleotide and 5-fluorouracil using sustained release poly (lactide-co-glycolide) microsphere formulations for potential combination therapy in cancer. Int. J. Pharm.234 (1–2), 129–238 (2002).
  • Sun X Pang Z Ye H et al. Co-delivery of pEGFP-h TRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials33 (3), 916–924 (2012).
  • Dai X Tan C . Combination of microRNA therapeutics with small- molecule anticancer drugs:mechanism of action and co-delivery nanocarriers. Adv. Drug Deliv. Rev.81, 184–197 (2015).
  • Yu YH Kim E Park DE et al. Cationic solid lipidnanoparticles for co-delivery of paclitaxel and siRNA. Eur. J. Pharm. Biopharm.80 (2), 268–273 (2012).
  • Guanglianone P Chan K Delaflor-Weiss E . Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Investig. New Drugs.12 (2), 103–110 (1994).
  • Immordino ML Dosio F Cattel L . Stealth liposomes: review of the basic science, rationale and clinical applications, existing and potential. Int. J. Nanomedicine1 (3), 297–315 (2006).
  • Zhu L Perche F Wang T et al. Matrix metalloproteinase 2- sensitive multifunctional polymeric micelles for tumor specific co-delivery of siRNA and hydrophobic drugs. Biomaterials35 (13), 4213–4222 (2013).
  • Han L Huang RQ Li JF et al. Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamido amine dendrimer. Biomaterials32 (4), 1242–1252 (2011).
  • Ma D Lin QM Zhang LM et al. Astar-shaped porphyrin-arginine functionalized poly(L-lysine) copolymer for photo- enhanced drug and gene co-delivery. Biomaterials35 (14), 4357–4367 (2014).
  • Gasper VM Goncalves C Pichon C et al. Poly(2-ethyl-2-oxazoline)-PLA-g-PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. J. Control. Rel.89, 90–104 (2014).
  • Daria YA Alexander VK . Pluronics and MDR reversal: an update. Mol. Pharmaceutics11 (8), 2566–2578 (2014).
  • Bao X Wang W Wang C et al. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials35 (29), 8450–8466 (2014).
  • Li HJ Du JZ Du XJ et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA113 (15), 4164–4169 (2014).
  • Tang S Yin Q Su J et al. Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials48, 1–15 (2015).
  • Michael CY Chaitan K . Thiol--disulfide exchange reactions in the mammalian extracellular environment. Annu. Rev. Chem. Biomol. Eng.7, 197–222 (2016).
  • Messens J Collet JF . Thiol-disulfide exchange in signaling: disulfide bonds as a switch. Antioxid. Redox Signal18 (13), 1594–1596 (2013).
  • Van LK Hamilton CJ Messens J . Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid. Redox Signal18 (13), 1642–1653 (2012).
  • Giuseppina S Gemma N Malav ST et al. Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol. Cancer Ther.14 (4), 1075–1084 (2015).
  • Zhang Q Ko NR Jung KO . Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem. Commun.48 (61), 7542–7552 (2012).
  • Xu Q Leong J Chua QY et al. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials34 (21), 5149–5162 (2013).
  • Chen M Zhang Y Chen Z et al. Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomater.49, 444–455 (2017).
  • Kang Y Lu L Lan J et al. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater.68, 137–153 (2018).
  • Fletcher JI Haber M Henderson MJ . ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer10 (2), 147–156 (2010).
  • Dean M Rzhetsky A Allikmets A . The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11 (7), 1156–1166 (2001).
  • Cuvier C Roblot-Treupel L Millot JM et al. Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem. Pharmacol.44 (3), 509–517 (1992).
  • Xiaowei D Russell JM . Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond).5 (4), 597–615 (2010).
  • Guoa Y Hea W Yang S et al. Co-delivery of docetaxel and verapamil by reduction-sensitive PEG-PLGA-SS-DTX conjugate micelles to reverse the multi-drug resistance of breast cancer. Colloids Surf. B Biointerfaces.151, 119–127 (2017).
  • Jabr-Milane LS Van Vlerken LE Yadav S et al. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev.34 (7), 592–602 (2008).
  • Milane L Ganesh S Shah S et al. Multi-modal strategies for overcoming tumor drug resistance: hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology. J. Control. Rel.155 (2), 237–247 (2011).
  • Chistiakov DA Myasoedova VA Orekhov AN et al. Nanocarriers in improving chemotherapy of multidrug resistant tumors: key developments and perspectives. Curr. Pharm. Des.23 (22), 3301–3308 (2017).
  • Gemma N Rupa RS Swati B et al. P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond).7 (1), 65–78 (2012).
  • Essex S Navarro G Sabhachandani P et al. Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther.22 (3), 257–266 (2015).
  • Wen ZM Jie J Zhang Y et al. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer. Biochem. Biophys. Res. Commun.493 (4), 1430–1437 (2017).
  • Saneja A Khare V Alam N et al. Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv.11 (1), 121–38 (2014).
  • Bansal T Akhtar N Jaggi M et al. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov. Today14 (21–22), 1067–1074 (2014).
  • Bernkop-Schnürch A Hornof M Zoidl T . Thiolated polymers--thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm.260 (2), 229–237 (2004).
  • Bernkop-Schnürch A Hoffer MH Kafedjiiski K . Thiomers for oral delivery of hydrophilic macromolecular drugs. Expert Opin. Drug Deliv.1 (1), 87–98 (2004).
  • Laffleur F Bernkop-Schnürch A . Thiomers:promising platform for macromolecular drug delivery. Future Med. Chem.4 (17), 2205–2216 (2014).
  • Florian F Herbert H Krum K et al. In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein. Biomaterials27 (34), 5855–5860 (2006).
  • Priya SS Rekha MR . Disulphide cross linked pullulan based cationic polymer for improved gene delivery and efflux pump inhibition. Colloids Surf. B Biointerfaces.146, 879–887 (2016).
  • Priya SS Rekha MR . Redox-sensitive cationic pullulan for efficient gene transfection and drug retention in C6 glioma cells. Int. J. Pharm.530 (1–2), 401–414 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.