345
Views
1
CrossRef citations to date
0
Altmetric
Review

Polymeric Nanoparticles As Carrier for Targeted and Controlled Delivery of Anticancer Agents

, & ORCID Icon
Pages 527-550 | Received 20 Jun 2019, Accepted 19 Aug 2019, Published online: 09 Sep 2019

References

  • Kumari P , GhoshB , BiswasS. Nanocarriers for cancer-targeted drug delivery. J. Drug Target.24(3), 179–191 (2016).
  • Gopinath H , VenugopalKS , ShanmugasundaramS , ShanmugamD. Anti-cancer nanoparticulate drug delivery system using biodegradable polymers. Elixir Appl. Chem.58(2013), 14551–14556 (2013).
  • Doppalapudi S , JainA , DombAJ , KhanW. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin. Drug Deliv.13(6), 891–909 (2016).
  • Chowdhury S , YusofF , SalimWW , SulaimanN , FaruckMO. An overview of drug delivery vehicles for cancer treatment: nanocarriers and nanoparticles including photovoltaic nanoparticles. J. Photochem. Photobiol. B Biol.164, 151–159 (2016).
  • Ferrara N , AdamisAP. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug. Discov.15(6), 385–404 (2016).
  • Tong R , KohaneDS. New strategies in cancer nanomedicine. Annu. Rev. Pharmacol. Toxicol.56, 41–57 (2016).
  • Liang Y , DongC , ZhangJ , DengL , DongA. A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy. Drug Dev. Ind. Pharm.43(6), 972–979 (2017).
  • Xu C , HaqueF , JasinskiDL , BinzelDW , ShuD , GuoP. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett.414, 57–70 (2017).
  • Zhao D , YiX , XuJ , YuanG , ZhuoR , LiF. Design and construction of self-hidden and pH-reversed targeting drug delivery nanovehicles via noncovalent interactions to overcome drug resistance. J. Mater. Chem. B5(15), 2823–2831 (2017).
  • King MR , MohamedZJ. Dual nanoparticle drug delivery: the future of anticancer therapies?12(2), 95–98 (2017).
  • Sarisozen C , PanJ , DuttaI , TorchilinVP. Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. J. Pharm. Investig.47(1), 37–49 (2017).
  • Russell LM , DawidczykCM , SearsonPC. Quantitative evaluation of the enhanced permeability and retention (EPR) effect. Methods Mol. Biol.1530, 247–254 (2017).
  • Her S , JaffrayDA , AllenC. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv. Drug Deliv. Rev.109, 84–101 (2017).
  • Venugopal K , RatherH , RajagopalKet al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. B. Biol.167, 282–289 (2017).
  • Guo C , ChenY , GaoWet al. Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics7(3), 775 (2017).
  • Ruttala HB , RamasamyT , GuptaB , ChoiH-G , YongCS , KimJO. Multiple polysaccharide-drug complex-loaded liposomes: a unique strategy in drug loading and cancer targeting. Carbohydr. Polym.173, 57–66 (2017).
  • Sharma AK , GothwalA , KesharwaniP , AlsaabH , IyerAK , GuptaU. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today22(2), 314–326 (2017).
  • Zhang W-W , WangY-C , KanX-M , WangX-M , GengD-M. Preparation and evaluation of peptide-dendrimer-paclitaxel conjugates for treatment of heterogeneous stage 1 nonsmall cell lung cancer in 293T and L132 cell lines. Trop. J. Pharm. Res.16(4), 737–742 (2017).
  • Saw PE , YuM , ChoiM , LeeE , JonS , FarokhzadOC. Hyper-cell-permeable micelles as a drug delivery carrier for effective cancer therapy. Biomaterials123, 118–126 (2017).
  • Zeng Q , LiH , JiangHet al. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials122, 105–113 (2017).
  • Surwase SS , MunotNM , IdageBB , IdageSB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv. Transl. Res.7(3), 416–427 (2017).
  • Bonferoni MC , RossiS , SandriG , FerrariF. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin. Cancer Biol.46, 205–214 (2017).
  • Huang X , DaiY , CaiJet al. Resveratrol encapsulation in core-shell biopolymer nanoparticles: impact on antioxidant and anticancer activities. Food Hydrocoll.64, 157–165 (2017).
  • Hunt H , Simón-GraciaL , TobiAet al. Targeting ofp32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J. Control. Rel.260, 142–153 (2017).
  • Cavallaro G , SardoC , CraparoEF , PorsioB , GiammonaG. Polymeric nanoparticles for siRNA delivery: production and applications. Int. J. Pharm.525(2), 313–333 (2017).
  • Mosafer J , AbnousK , TafaghodiM , MokhtarzadehA , RamezaniM. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur. J. Pharm. Biopharm.113, 60–74 (2017).
  • Guo J , GaoX , SuLet al. Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials32(31), 8010–8020 (2011).
  • Ahmad N , AlamMA , AhmadR , NaqviAA , AhmadFJ. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Artif. Cells Nanomed. Biotechnol.46(2), 432–446 (2018).
  • Mozar FS , ChowdhuryEH. Surface-modification of carbonate apatite nanoparticles enhances delivery and cytotoxicity of gemcitabine and anastrozole in breast cancer cells. Pharmaceutics9(2), 21 (2017).
  • Ramzy L , NasrM , MetwallyAA , AwadGA. Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur. J. Pharm. Sci.104, 273–292 (2017).
  • Austin P , BrineC , CastleJ , ZikakisJ. Chitin: new facets of research. Science212(4496), 749–753 (1981).
  • Farhadihosseinabadi B , ZarebkohanA , EftekharyM , HeiatM , MoghaddamMM , GholipourmalekabadiM. Crosstalk between chitosan and cell signaling pathways. Cell. Mol. Life Sci.76(14), 2697–2718 (2019).
  • Dheer D , AroraD , JaglanS , RawalRK , ShankarR. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J. Drug Target.25(1), 1–16 (2017).
  • Ishihara M , HattoriH , NakamuraS. A review on biomedical applications of chitosan-based biomaterials. Int. J. Pharm. Biol. Sci6, 162–178 (2015).
  • Key J , ParkK. Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy. Int. J. Mol. Sci.18(3), 594 (2017).
  • Kean T , ThanouM. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev.62(1), 3–11 (2010).
  • Ahmadi F , OveisiZ , SamaniSM , AmoozgarZ. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci.10(1), 1 (2015).
  • Zamora-Mora V , Fernández-GutiérrezM , González-GómezÁet al. Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr. Polym.157, 361–370 (2017).
  • Ahmed TA , AljaeidBM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther.10, 483 (2016).
  • Esfandiarpour-Boroujeni S , Bagheri-KhoulenjaniS , MirzadehH , AmanpourS. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym.168, 14–21 (2017).
  • Zhang X , YangX , JiJ , LiuA , ZhaiG. Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf. B Biointerfaces148, 460–473 (2016).
  • Skorik YA , GolyshevAA , KritchenkovASet al. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydr. Polym.162, 49–55 (2017).
  • Wang X , WeiB , ChengX , WangJ , TangR. 3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory. Eur. J. Pharm. Biopharm.113, 168–177 (2017).
  • Anandhakumar S , KrishnamoorthyG , RamkumarK , RaichurA. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C70, 378–385 (2017).
  • Natesan S , SugumaranA , PonnusamyC , ThiagarajanV , PalanichamyR , KandasamyR. Chitosan stabilized camptothecin nanoemulsions: development, evaluation and biodistribution in preclinical breast cancer animal mode. Int. J. Biol. Macromol.104(Pt B), 1846–1852 (2017).
  • Patil P , BhoskarM. Optimization and evaluation of spray dried chitosan nanoparticles containing doxorubicin. Int. J. Curr. Pharm. Res.6(2), 7–15 (2014).
  • Sheikholeslami ZS , Salimi-KenariH , ImaniM , AtaiM , NodehiA. Exploring the effect of formulation parameters on the particle size of carboxymethyl chitosan nanoparticles prepared via reverse micellar crosslinking. J. Microencapsul.34(3), 270–279 (2017).
  • Kayitmazer A , KoksalA , IyilikEK. Complex coacervation of hyaluronic acid and chitosan: effects of pH, ionic strength, charge density, chain length and the charge ratio. Soft Matter11(44), 8605–8612 (2015).
  • Jothimani B , SureshkumarS , VenkatachalapathyB. Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis–a physicochemical study. Carbohydr. Polym.173, 714–720 (2017).
  • Zhang C , ShiG , ZhangJet al. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J. Control. Rel.256, 170–181 (2017).
  • Lopes M , AbrahimB , VeigaFet al. Preparation methods and applications behind alginate-based particles. Expert Opin. Drug Deliv.14(6), 769–782 (2017).
  • Fuenzalida JP , NareddyPK , Moreno-VillosladaIet al. On the role of alginate structure in complexing with lysozyme and application for enzyme delivery. Food Hydrocoll.53, 239–248 (2016).
  • Lopes M , AbrahimB , VeigaFet al. Preparation methods and applications behind alginate-based particles. Expert Opin. Drug Deliv.14(6), 769–782 (2017).
  • Kumar S , MaitiP. Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv.6(72), 67449–67480 (2016).
  • Szekalska M , PuciłowskaA , SzymańskaE , CiosekP , WinnickaK. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci.2016, Article ID 7697031, 17 pp. (2016).
  • Cui Z , ZhangY , ZhangJet al. Sodium alginate-functionalized nanodiamonds as sustained chemotherapeutic drug-release vectors. Carbon97, 78–86 (2016).
  • Gao C , TangF , GongGet al. pH-Responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale9(34), 12533–12542 (2017).
  • Bygd HC , BratlieKM. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport. J. Biomed. Mater. Res. A104(7), 1707–1719 (2016).
  • Peng N , WuB , WangLet al. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater. Sci.4(12), 1802–1813 (2016).
  • Dalheim MØ , VanackerJ , NajmiMA , AachmannFL , StrandBL , ChristensenBE. Efficient functionalization of alginate biomaterials. Biomaterials80, 146–156 (2016).
  • Sarika P , JamesNR , RajDK. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. Int. J. Biol. Macromol.86, 1–9 (2016).
  • Zhang W , SunX , FanX , LiM , HeG. Pickering emulsions stabilized by hydrophobically modified alginate nanoparticles: preparation and pH-responsive performance in vitro. J. Dispers. Sci. Technol.39(3), 367–374 (2018).
  • Chuang J-J , HuangY-Y , LoS-Het al. Effects of pH on the shape of alginate particles and its release behavior. Int. J. Polym. Sci.2017, Article ID 3902704, 9 pp. (2017).
  • Paques JP , VanDer Linden E , Van RijnCJ , SagisLM. Preparation methods of alginate nanoparticles. Adv. Colloid Interface Sci.209, 163–171 (2014).
  • Dul M , PaluchKJ , HealyAM , SasseA , TajberL. Optimisation of the self-assembly process: production of stable, alginate-based polyelectrolyte nanocomplexes with protamine. J. Nanoparticle Res.19(6), 221 (2017).
  • Mohamed FaN , Laraba-DjebariF. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: safe immunoprotective approach against scorpion envenoming. Vaccine34(24), 2692–2699 (2016).
  • Praphakar RA , MunusamyMA , AlarfajAA , KumarSS , RajanM. Zn 2+ cross-linked sodium alginate-g-allylamine-mannose polymeric carrier of rifampicin for macrophage targeting tuberculosis nanotherapy. New J. Chem.41(19), 11324–11334 (2017).
  • Brus J , UrbanovaM , CzernekJet al. Structure and dynamics of alginate gels cross-linked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromolecules18(8), 2478–2488 (2017).
  • Matai I , GopinathP. Chemically cross-linked hybrid nanogels of alginate and PAMAM dendrimers as efficient anticancer drug delivery vehicles. ACS Biomater. Sci. Eng.2(2), 213–223 (2016).
  • Ren Y , LiRQ , CaiYR , XiaT , YangM , XuFJ. Effective codelivery of lncRNA and pDNA by pullulan-based nanovectors for promising therapy of hepatocellular carcinoma. Adv. Funct. Mater.26(40), 7314–7325 (2016).
  • Li H , CuiY , SuiJet al. Efficient delivery of DOX to nuclei of hepatic carcinoma cells in the subcutaneous tumor model using pH-sensitive pullulan–DOX conjugates. ACS Appl. Mater. Interfaces7(29), 15855–15865 (2015).
  • Wu S , LuM , ChenJet al. Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans. Int. J. Biol. Macromol.82, 740–743 (2016).
  • Teramoto N , ShibataM. Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydr. Polym.63(4), 476–481 (2006).
  • Li X , XueW , LiuYet al. HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility. Mater. Sci. Eng. C58, 1046–1057 (2016).
  • Aydogdu H , KeskinD , BaranET , TezcanerA. Pullulan microcarriers for bone tissue regeneration. Mater. Sci. Eng. C63, 439–449 (2016).
  • Zhang C , AnT , WangDet al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J. Control. Rel.226, 193–204 (2016).
  • Singh RS , KaurN , RanaV , KennedyJF. Recent insights on applications of pullulan in tissue engineering. Carbohydr. Polym.153, 455–462 (2016).
  • Henry N , ClouetJ , FragaleAet al. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Deliv.24(1), 999–1010 (2017).
  • Sui J , CuiY , CaiHet al. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale9(8), 2755–2767 (2017).
  • Askarian S , AbnousK , AyatollahiS , FarzadSA , OskueeRK , RamezaniM. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydr. Polym.157, 929–937 (2017).
  • Tamura R , UemotoS , TabataY. Augmented liver targeting of exosomes by surface modification with cationized pullulan. Acta Biomater.57, 274–284 (2017).
  • Chen L , JiF , BaoYet al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. Mater. Sci. Eng. C70, 418–429 (2017).
  • Ahmed RZ , SiddiquiK , ArmanM , AhmedN. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym.90(1), 441–446 (2012).
  • Bounaix M-S , RobertH , GabrielVet al. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol. Lett.311(1), 18–26 (2010).
  • Van Tomme SR , HenninkWE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev. Med. Devices4(2), 147–164 (2007).
  • Khalikova E , SusiP , KorpelaT. Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol. Mol. Biol. Rev.69(2), 306–325 (2005).
  • Chen Z , KrishnamacharyB , PenetM-F , BhujwallaZM. Acid-degradable dextran as an image guided siRNA carrier for COX-2 downregulation. Theranostics8(1), 1 (2018).
  • Nonsuwan P , MatsugamiA , HayashiF , HyonS-H , MatsumuraK. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr. Polym.204, 131–141 (2019).
  • Parhizkar E , DaneshamouzS , Mohammadi-SamaniSet al. Synthesis and in vitro assessment of novel water-soluble dextran-docetaxel conjugates as potential pH sensitive system for tumor-targeted delivery. J. Appl. Polym. Sci.134(43), 45457 (2017).
  • Alibolandi M , MohammadiM , TaghdisiSM , RamezaniM , AbnousK. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym.155, 218–229 (2017).
  • Ghadiri M , Vasheghani-FarahaniE , AtyabiF , KobarfardF , HosseinkhaniH. In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells. Iran J. Pharm. Res.16(4), 1320 (2017).
  • Ghadiri M , Vasheghani-FarahaniE , AtyabiF , KobarfardF , Mohamadyar-ToupkanlouF , HosseinkhaniH. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A105(10), 2851–2864 (2017).
  • Curcio M , Diaz-GomezL , CirilloG , ConcheiroA , IemmaF , Alvarez-LorenzoC. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur. J. Pharm. Biopharm.117, 324–332 (2017).
  • Zhang J , ChenK , DingYet al. Self-assembly of pH-responsive dextran-g-poly (lactide-co-glycolide)-g-histidine copolymer micelles for intracellular delivery of paclitaxel and its antitumor activity. RSC Adv.6(28), 23693–23701 (2016).
  • Shaki H , GanjiF , KempenPJ , Dolatshahi-PirouzA , Vasheghani-FarahaniE. Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. J. Drug. Deliv. Sci. Technol.44, 333–341 (2018).
  • Jafarzadeh-Holagh S , Hashemi-NajafabadiS , ShakiH , Vasheghani-FarahaniE. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J. Colloid. Interface Sci.523, 179–190 (2018).
  • Huang J , ZhangH , YuYet al. Biodegradable self-assembled nanoparticles of poly (d, l-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials35(1), 550–566 (2014).
  • Lee GY , KimJ-H , ChoiKYet al. Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials53, 341–348 (2015).
  • Ravar F , SaadatE , GholamiMet al. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J. Control. Rel.229, 10–22 (2016).
  • Cho H-J , YoonI-S , YoonHYet al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials33(4), 1190–1200 (2012).
  • Thomas RG , MoonM , LeeS , JeongYY. Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: in vitro and in vivo analysis. Int. J. Biol. Macromol.72, 510–518 (2015).
  • Jia X , HanY , PeiMet al. Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics. Carbohydr. Polym.152, 391–397 (2016).
  • Ling X , ShenY , SunRet al. Tumor-targeting delivery of hyaluronic acid–platinum (iv) nanoconjugate to reduce toxicity and improve survival. Polym. Chem.6(9), 1541–1552 (2015).
  • Wang S , ZhangJ , WangY , ChenM. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine12(2), 411–420 (2016).
  • Qi X , FanY , HeH , WuZ. Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously. Carbohydr. Polym.126, 231–239 (2015).
  • Chen H , QinJ , HuY. Efficient degradation of high-molecular-weight hyaluronic acid by a combination of ultrasound, hydrogen peroxide, and copper ion. Molecules24(3), 617 (2019).
  • Pedrosa SS , PereiraP , CorreiaA , GamaF. Targetability of hyaluronic acid nanogel to cancer cells: in vitro and in vivo studies. Eur. J. Pharm. Sci.104, 102–113 (2017).
  • Schanté CE , ZuberG , HerlinC , VandammeTF. Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids. Carbohydr. Polym.87(3), 2211–2216 (2012).
  • Rayahin JE , BuhrmanJS , ZhangY , KohTJ , GemeinhartRA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng.1(7), 481 (2015).
  • Naor D . Interaction between hyaluronic acid and its receptors (Cd44, rHaMM) regulates the activity of inflammation and cancer. Front. Immunol.7:39, 1–4 (2016).
  • Jiang L , LiuG , LiuH , HanJ , LiuZ , MaH. Molecular weight impact on the mechanical forces between hyaluronan and its receptor. Carbohydr. Polym.197, 326–336 (2018).
  • Lin WJ , LeeW-C , ShiehM-J. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr. Polym.155, 101–108 (2017).
  • Raja MA , ArifM , FengC , ZeenatS , LiuC-G. Synthesis and evaluation of pH-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers. J. Biomater. Appl.31(8), 1182–1195 (2017).
  • He R , YinC. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater.53, 355–366 (2017).
  • Wu J , TangC , YinC. Co-delivery of doxorubicin and interleukin-2 via chitosan based nanoparticles for enhanced antitumor efficacy. Acta Biomater.47, 81–90 (2017).
  • Agrawal P , SinghRP , KumariLet al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater. Sci. Eng. C74, 167–176 (2017).
  • Tan L , HuangR , LiX , LiuS , ShenY-M , ShaoZ. Chitosan-based core-shell nanomaterials for pH-triggered release of anticancer drug and near-infrared bioimaging. Carbohydr. Polym.157, 325–334 (2017).
  • Sadreddini S , SafaralizadehR , BaradaranBet al. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol. Lett.181, 79–86 (2017).
  • Mehata AK , BhartiS , SinghPet al. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids Surf. B Biointerfaces173, 366–377 (2019).
  • Cheng B , GaoF , MaissyE , XuP. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater.84, 378–390 (2019).
  • Alinejad V , SomiMH , BaradaranBet al. Co-delivery of IL17RB siRNA and doxorubicin by chitosan-based nanoparticles for enhanced anticancer efficacy in breast cancer cells. Biomed. Pharmacother.83, 229–240 (2016).
  • Abruzzo A , ZuccheriG , BellutiFet al. Chitosan nanoparticles for lipophilic anticancer drug delivery: development, characterization and in vitro studies on HT29 cancer cells. Colloids Surf. B Biointerfaces145, 362–372 (2016).
  • Zhang C , ShiG , ZhangJet al. Redox-and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy. Nanoscale9(9), 3304–3314 (2017).
  • Anirudhan TS , AnilaMM , FranklinS. Synthesis characterization and biological evaluation of alginate nanoparticle for the targeted delivery of curcumin. Mater. Sci. Eng. C78, 1125–1134 (2017).
  • Saralkar P , DashAK. Alginate nanoparticles containing curcumin and resveratrol: preparation, characterization, and in vitro evaluation against DU145 prostate cancer cell line. AAPS PharmSciTech.18(7), 2814–2823 (2017).
  • Gao C , TangF , ZhangJ , LeeSM , WangR. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells. J. Mater. Chem. B5(12), 2337–2346 (2017).
  • Mirrahimi M , KhateriM , BeikJet al. Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel. J. Biomed. Mater. Res. Part B Appl. Biomater.10.1002/jbm.b.34356 (2019).
  • Markeb AA , El-MaaliNA , SayedDMet al. Synthesis, structural characterization, and preclinical efficacy of a novel paclitaxel-loaded alginate nanoparticle for breast cancer treatment. Int. J. Breast Cancer1–8 (2016).
  • Wang X , ChangZ , NieXet al. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. Nanomedicine15(1), 153–163 (2019).
  • Katuwavila NP , PereraA , SamarakoonSRet al. Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 cells. J. Nanomater.1–12 (2016).
  • Pranatharthiharan S , PatelMD , MalsheVCet al. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv.24(1), 20–29 (2017).
  • Balasso A , SalmasoS , PontissoPet al. Re-programming pullulan for targeting and controlled release of doxorubicin to the hepatocellular carcinoma cells. Eur. J. Pharm. Sci.103, 104–115 (2017).
  • Huang L , WangY , LingXet al. Efficient delivery of paclitaxel into ASGPR over-expressed cancer cells using reversibly stabilized multifunctional pullulan nanoparticles. Carbohydr. Polym.159, 178–187 (2017).
  • Li H , MaM , ZhangJet al. Ultrasound-enhanced delivery of doxorubicin-loaded nanodiamonds from pullulan-all-trans-retinal nanoparticles for effective cancer therapy. ACS Appl. Mater. Interfaces11:22, 20341–20349 (2019).
  • Chen L , QianM , ZhangLet al. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Adv.8(32), 17710–17722 (2018).
  • Priya S , RekhaM. Redox sensitive cationic pullulan for efficient gene transfection and drug retention in C6 glioma cells. Int. J. Pharm.530(1–2), 401–414 (2017).
  • Huang L , ChaurasiyaB , WuDet al. Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy. Nanomedicine14(3), 1005–1017 (2018).
  • Tang Y , LiY , XuRet al. Self-assembly of folic acid dextran conjugates for cancer chemotherapy. Nanoscale10(36), 17265–17274 (2018).
  • Zhang X , ZhangR , HuangJet al. Albumin enhances PTX delivery ability of dextran NPs and therapeutic efficacy of PTX for colorectal cancer. J. Mater. Chem. B7, 3537–3545 (2019).
  • Ji W , WangB , FanQ , XuC , HeY , ChenY. Chemosensitizing indomethacin-conjugated dextran-based micelles for effective delivery of paclitaxel in resistant breast cancer therapy. PLoS ONE12(7), e0180037 (2017).
  • Zhao Q-S , HuL-L , WangZ-D , LiZ-P , WangA-W , LiuJ. Resveratrol-loaded folic acid-grafted dextran stearate submicron particles exhibits enhanced antitumor efficacy in non-small cell lung cancers. Mater. Sci. Eng. C72, 185–191 (2017).
  • Fang Y , WangH , DouH-Jet al. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int. J. Nanomedicine13, 5673 (2018).
  • Wang T , HouJ , SuC , ZhaoL , ShiY. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J. Nanobiotechnol.15(1), 7 (2017).
  • Yang Z , SunN , ChengR , ZhaoC , LiuJ , TianZ. Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. J. Mater. Chem. B5, 6762–6775 (2017).
  • Parashar P , RathorM , DwivediM , SarafS. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics10(1), 33 (2018).
  • Jiang H , ShiX , YuX , HeX , AnY , LuH. Hyaluronidase enzyme-responsive targeted nanoparticles for effective delivery of 5-fluorouracil in colon cancer. Pharm. Res.35(4), 73 (2018).
  • Li J , YangX , YangP , GaoF. Hyaluronic acid–conjugated silica nanoparticles for breast cancer therapy. Inorg. Nano-Met. Chem.47(5), 777–782 (2017).
  • Vogus DR , EvansMA , PusuluriAet al. A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer. J. Control. Rel.267, 191–202 (2017).
  • Cerqueira BBS , LashamA , ShellingAN , Al-KassasR. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C76, 593–600 (2017).
  • Lu Z , SuJ , LiZ , ZhanY , YeD. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy. Drug Dev. Ind. Pharm.43(1), 160–170 (2017).
  • Wu J , DengC , MengF , ZhangJ , SunH , ZhongZ. Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. J. Control. Rel.259, 76–82 (2017).
  • Guo X-L , KangX-X , WangY-Qet al. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater.84, 367–377 (2019).
  • Shahin SA , WangR , SimargiSIet al. Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine14(4), 1381–1394 (2018).
  • Chen H , NanW , WeiXet al. Toxicity, pharmacokinetics, and in vivo efficacy of biotinylated chitosan surface-modified PLGA nanoparticles for tumor therapy. Artif. Cells Nanomed. Biotechnol.45(6), 1115–1122 (2017).
  • Shi D , XuX , YeYet al. Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano10(1), 1292–1299 (2016).
  • Jaidev L , KrishnanUM , SethuramanS. Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Mater. Sci. Eng. C47, 40–47 (2015).
  • Peres C , MatosAI , ConniotJet al. Poly (lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater.48, 41–57 (2017).
  • Ebrahimian M , TaghaviS , MokhtarzadehA , RamezaniM , HashemiM. Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Appl. Biochem. Biotechnol.183(1), 126–136 (2017).
  • Zhang W , LiC , ShenCet al. Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment. Drug Deliv.23(7), 2575–2580 (2016).
  • Said-Elbahr R , NasrM , AlhnanMA , TahaI , SammourO. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur. J. Pharm. Biopharm.103, 1–12 (2016).
  • Silva ATCR , CardosoBCO , ESilva MESR , FreitasRFS , SousaRG. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol.6(1), 8 (2015).
  • Keles H , NaylorA , CleggF , SammonC. Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym. Degrad. Stab.119, 228–241 (2015).
  • Rowe MD , EyilerE , WaltersKB. Hydrolytic degradation of bio-based polyesters: effect of pH and time. Polym. Test52, 192–199 (2016).
  • David-Naim MB , GradE , AizikGet al. Polymeric nanoparticles of siRNA prepared by a double-emulsion solvent-diffusion technique: physicochemical properties, toxicity, biodistribution and efficacy in a mammary carcinoma mice model. Biomaterials145, 154–167 (2017).
  • Bains BK , GreeneMK , McgirrLM , DormanJ , FarrowSN , ScottCJ. Encapsulation of the p38 MAPK inhibitor GSK 678361A in nanoparticles for inflammatory-based disease states. J. Interdiscip. Nanomed.1(3), 85–92 (2016).
  • Fasehee H , ZarrinradG , TavangarSM , GhaffariSH , FaghihiS. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: different administration routes. Mater. Sci. Eng. C63, 587–595 (2016).
  • Wu S , YangX , LiYet al. Preparation of HCPT-loaded nanoneedles with pointed ends for highly efficient cancer chemotherapy. Nanoscale Res. Lett.11(1), 294 (2016).
  • Panda A , MeenaJ , KataraR , MajumdarDK. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm. Dev. Technol.21(1), 43–53 (2016).
  • Santoro M , ShahSR , WalkerJL , MikosAG. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev.107, 206–212 (2016).
  • Nguyen HN , HaPT , SaoNguyen Aet al. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles. Adv. Nat. Sci-Nanosci.7(2), 025001 (2016).
  • Narayanan G , VernekarVN , KuyinuEL , LaurencinCT. Poly(lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev.107, 247–276 (2016).
  • Cosco D , PaolinoD , DeAngelis Fet al. Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. Eur. J. Pharm. Biopharm.89, 30–39 (2015).
  • Danafar H , RostamizadehK , HamidiM. Polylactide/poly (ethylene glycol)/polylactide triblock copolymer micelles as carrier for delivery of hydrophilic and hydrophobic drugs: a comparison study. J. Pharm. Investig.48(3), 381–391 (2017).
  • Elmowafy EM , TiboniM , SolimanME. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig.49(4), 347–380 (2019).
  • Wang W , ChenS , ZhangLet al. Poly (lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug. Mater. Sci. Eng. C46, 514–520 (2015).
  • Koutsiouki K , AngelopoulouA , IoannouEet al. TAT peptide-conjugated magnetic PLA-PEG nanocapsules for the targeted delivery of paclitaxel: in vitro and cell studies. AAPS PharmSciTech.18(3), 769–781 (2017).
  • Liang H , FriedmanJM , NacharajuP. Fabrication of biodegradable PEG–PLA nanospheres for solubility, stabilization, and delivery of curcumin. Artif. Cells Nanomed. Biotechnol.45(2), 297–304 (2017).
  • Wu Y-L , WangH , QiuY-K , LohXJ. PLA-based thermogel for the sustained delivery of chemotherapeutics in a mouse model of hepatocellular carcinoma. RSC Adv.6(50), 44506–44513 (2016).
  • Toncheva A , MinchevaR , KanchevaMet al. Antibacterial PLA/PEG electrospun fibers: comparative study between grafting and blending PEG. Eur. Polym. J.75, 223–233 (2016).
  • Kalogerini M , KartsonakisI , BrasinikaD , KoumoulosE , CharitidisC. Poly (lactic acid) microparticles for drug carriers in enhancement of controlled release systems towards 3D printing. Int. J. Nanomed. Nanosurg.3(2), 1–5 (2017).
  • Altmeyer C , KaramTK , KhalilNM , MainardesRM. Tamoxifen-loaded poly (L-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Mater. Sci. Eng. C60, 135–142 (2016).
  • Arias V , OdeliusK , AlbertssonAC. Nano-stereocomplexation of polylactide (PLA) spheres by spray droplet atomization. Macromol. Rapid Commun.35(22), 1949–1953 (2014).
  • Leung MH , HaradaT , DaiS , KeeTW. Nanoprecipitation and spectroscopic characterization of curcumin-encapsulated polyester nanoparticles. Langmuir31(42), 11419–11427 (2015).
  • Li Z , TanBH , LinT , HeC. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci.62, 22–72 (2016).
  • Im SH , LeeCW , BibiG , JungY , KimSH. Supercritical fluid technology parameters affecting size and behavior of stereocomplex polylactide particles and their composites. Polym. Eng. Sci.58(7), 1193–1200 (2018).
  • Gentile P , Mccolgan-BannonK , GianoneNC , SefatF , DalgarnoK , FerreiraAM. Biosynthetic PCL-graft-collagen bulk material for tissue engineering applications. Materials10(7), 693 (2017).
  • Dong X , ChenH , QinJet al. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo. Drug Deliv.24(1), 641–650 (2017).
  • Karanam V , MarslinG , KrishnamoorthyBet al. Poly (ε-caprolactone) nanoparticles of carboplatin: preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines. Colloids Surf. B Biointerfaces130, 48–52 (2015).
  • Cabeza L , OrtizR , PradosJet al. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly (ε-caprolactone) nanoparticles in lung and breast cancer treatment: an in vitro and in vivo study. Eur. J. Pharm. Sci.102, 24–34 (2017).
  • Cai Y , WangS , WuMet al. PCL–F68–PCL/PLGA–PEG–PLGA mixed micelles mediated delivery of mitoxantrone for reversing multidrug resistant in breast cancer. RSC Adv.6(42), 35318–35327 (2016).
  • Yang L , LiJ , JinY , LiM , GuZ. In vitro enzymatic degradation of the cross-linked poly(ε-caprolactone) implants. Polym. Degrad. Stab.112, 10–19 (2015).
  • Banerjee A , ChatterjeeK , MadrasG. Enzymatic degradation of polycaprolactone–gelatin blend. Mater. Res. Express2(4), 045303 (2015).
  • Gou M , ZhengL , PengXet al. Poly (ε-caprolactone)–poly (ethylene glycol)–poly(ε-caprolactone)(PCL–PEG–PCL) nanoparticles for honokiol delivery in vitro. Int. J. Pharm.375(1-2), 170–176 (2009).
  • Malikmammadov E , TanirTE , KiziltayA , HasirciV , HasirciN. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed.29(7-9), 863–893 (2018).
  • Zhang L , ChenZ , WangHet al. Preparation and evaluation of PCL–PEG–PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Adv.6(60), 54727–54737 (2016).
  • Cheng T , ZhangY , LiuJet al. Ligand-switchable micellar nanocarriers for prolonging circulation time and enhancing targeting efficiency. ACS Appl. Mater. Interfaces10(6), 5296–5304 (2018).
  • Manjili HK , GhasemiP , MalvandiH , MousaviMS , AttariE , DanafarH. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur. J. Pharm. Biopharm.116, 17–30 (2017).
  • Marslin G , SarmentoBFCC , FranklinGet al. Curcumin encapsulated into methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles increases cellular uptake and neuroprotective effect in glioma cells. Planta Med.83(05), 434–444 (2017).
  • Palamà IE , CorteseB , D'amoneS , GigliG. mRNA delivery using non-viral PCL nanoparticles. Biomater. Sci.3(1), 144–151 (2015).
  • Muhammad Z , RazaA , GhafoorSet al. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharm. Sci.91, 251–255 (2016).
  • Rudzinski WE , PalaciosA , AhmedA , LaneMA , AminabhaviTM. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym.147, 323–332 (2016).
  • Pasut G , PaolinoD , CeliaCet al. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Rel.199, 106–113 (2015).
  • Evans JC , MalhotraM , GuoJet al. Folate-targeted amphiphilic cyclodextrin. siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. Nanomedicine12(8), 2341–2351 (2016).
  • Freag MS , ElnaggarYS , AbdelmonsifDA , AbdallahOY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int. J. Nanomedicine11, 4799 (2016).
  • Pelaz B , DelPino P , MaffrePet al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano9(7), 6996–7008 (2015).
  • Pawar S , MahajanK , VaviaP. In vivo anticancer efficacy and toxicity studies of a novel polymer conjugate N-acetyl glucosamine (NAG)–PEG–doxorubicin for targeted cancer therapy. AAPS PharmSciTech.18(8), 3021–3033 (2017).
  • Chu L , GaoH , ChengTet al. A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. ChemComm52(37), 6265–6268 (2016).
  • Gref R , LückM , QuellecPet al. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces18(3), 301–313 (2000).
  • Wan X , ZhangJ , YuW , ShenL , JiS , HuT. Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins. Process Biochem.52, 183–191 (2017).
  • Mustafa S , DeviVK , PaiRS. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Deliv. Transl. Res.7(1), 27–36 (2017).
  • Ebrahimi E , KhandaghiAA , ValipourFet al. In vitro study and characterization of doxorubicin-loaded magnetic nanoparticles modified with biodegradable copolymers. Artif. Cells Nanomed. Biotechnol.44(2), 550–558 (2016).
  • Li S , LiX , DingJ , HanL , GuoX. Anti-tumor efficacy of folate modified PLGA-based nanoparticles for the co-delivery of drugs in ovarian cancer. Drug Des. Devel. Ther.13, 1271 (2019).
  • Hafezi Ghahestani Z , AlebooyeLangroodi F , MokhtarzadehA , RamezaniM , HashemiM. Evaluation of anti-cancer activity of PLGA nanoparticles containing crocetin. Artif. Cells Nanomed. Biotechnol.45(5), 955–960 (2017).
  • Arruda DC , DeOliveira TD , CursinoPHFet al. Inhibition of melanoma metastasis by dual-peptide PLGA NPS. Pept. Sci.108, 1–7 (2017).
  • Saneja A , KumarR , MintooMJet al. Gemcitabine and betulinic acid co-encapsulated PLGA−PEG polymer nanoparticles for improved efficacy of cancer chemotherapy. Mater. Sci. Eng. C98, 764–771 (2019).
  • Cui Y-N , XuQ-X , DavoodiP , WangD-P , WangC-H. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin. Acta Pharmacol. Sin.38(6), 943 (2017).
  • Liu P , ChenN , YanLet al. Preparation, characterisation and in vitro and in vivo evaluation of CD44-targeted chondroitin sulphate-conjugated doxorubicin PLGA nanoparticles. Carbohydr. Polym.213, 17–26 (2019).
  • Mehdizadeh M , RouhaniH , SepehriNet al. Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy. Artif. Cells Nanomed. Biotechnol.45(3), 495–504 (2017).
  • Orunoğlu M , KaffashiA , PehlivanSBet al. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model. Mater. Sci. Eng. C78, 32–38 (2017).
  • Yu C , ZhouQ , XiaoFet al. Enhancing doxorubicin delivery toward tumor by hydroxyethyl starch-g-polylactide partner nanocarriers. ACS Appl. Mater. Interfaces9(12), 10481–10493 (2017).
  • Afsharzadeh M , AbnousK , Yazdian–RobatiR , AtaranzadehA , RamezaniM , HashemiM. Formulation and evaluation of anticancer and antiangiogenesis efficiency of PLA–PEG nanoparticles loaded with galbanic acid in C26 colon carcinoma, in vitro and in vivo. J. Cell. Physiol.234(5), 6099–6107 (2019).
  • Kumari P , MuddinetiOS , RompicharlaSVKet al. Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv.24(1), 209–223 (2017).
  • Feng C , YuanX , ChuK , ZhangH , JiW , RuiM. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int. J. Biol. Macromol.125, 700–710 (2019).
  • Qi D , GongF , TengXet al. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery. J. Biomater. Sci. Polym. Ed.28(14), 1538–1555 (2017).
  • Lima SaC , GasparA , ReisS , DurãesL. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. Mater. Sci. Eng. C75, 1420–1426 (2017).
  • Yao S , LiL , SuX-Tet al. Development and evaluation of novel tumor-targeting paclitaxel-loaded nano-carriers for ovarian cancer treatment: in vitro and in vivo. J. Exp. Clin. Cancer Res.37(1), 29 (2018).
  • Zhou Z , KennellC , JafariMet al. Sequential delivery of erlotinib and doxorubicin for enhanced triple negative breast cancer treatment using polymeric nanoparticle. Int. J. Pharm.530(1–2), 300–307 (2017).
  • Wang Y-R , YangS-Y , ChenG-X , WeiP. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: studies in vitro and in vivo. Biochem. Biophys. Res. Commun.499(1), 8–16 (2018).
  • Medel S , SyrovaZ , KovacikLet al. Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. Eur. Polym. J.93, 116–131 (2017).
  • Zhang D , ZouZ , RenWet al. Gambogic acid-loaded PEG–PCL nanoparticles act as an effective antitumor agent against gastric cancer. Pharm. Dev. Technol.23(1), 33–40 (2018).
  • Guo F , GuoD , ZhangWet al. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. Eur. J. Pharm. Sci.99, 328–336 (2017).
  • Parashar P , TripathiCB , AryaMet al. A facile approach for fabricating CD44-targeted delivery of hyaluronic acid-functionalized PCL nanoparticles in urethane-induced lung cancer: Bcl-2, MMP-9, caspase-9, and BAX as potential markers. Drug Deliv. Transl. Res.9(1), 37–52 (2019).
  • Manjili HK , MalvandiH , MousaviMS , AttariE , DanafarH. In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif. Cells Nanomed. Biotechnol.46(5), 926–936 (2018).
  • Nosrati H , BarzegariP , DanafarH , KheiriManjili H. Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin. Artif. Cells Nanomed. Biotechnol.47(1), 104–114 (2019).
  • Tang X , LyuY , XieD , LiA , LiangY , ZhengD. Therapeutic effect of sorafenib-loaded TPGS-b-PCL nanoparticles on liver cancer. J. Biomed. Nanotechnol.14(2), 396–403 (2018).
  • Öztürk K , MashalAR , YeginBA , ÇalışS. Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm. Dev. Technol.22(5), 635–641 (2017).
  • Chen LX , NiXL , ZhangHet al. Preparation, characterization, in vitro and in vivo anti-tumor effect of thalidomide nanoparticles on lung cancer. Int. J. Nanomedicine13, 2463 (2018).
  • Liu J , ZengY , ShiSet al. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Int. J. Nanomedicine12, 3561 (2017).
  • Bharali DJ , SudhaT , CuiH , MianBM , MousaSA. Anti-CD24 nano-targeted delivery of docetaxel for the treatment of prostate cancer. Nanomedicine13(1), 263–273 (2017).
  • Feng R , DengP , SongZet al. Glycyrrhetinic acid-modified PEG-PCL copolymeric micelles for the delivery of curcumin. React. Funct. Polym.111, 30–37 (2017).
  • Zhang Y , YangC , WangWet al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci. Rep.6, 21225 (2016).
  • Li H , TongY , BaiLet al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int. J. Biol. Macromol.107, 204–211 (2018).
  • Wani A , SavithraGHL , AbyadAet al. Surface PEGylation of mesoporous silica nanorods (MSNR): effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells. Sci. Rep.7(1), 2274 (2017).
  • Zheng N , LiuW , LiBet al. Co-delivery of sorafenib and metapristone encapsulated by CXCR4-targeted PLGA-PEG nanoparticles overcomes hepatocellular carcinoma resistance to sorafenib. J. Exp. Clin. Cancer Res.38(1), 232 (2019).
  • Aldrian G , VaissièreA , KonateKet al. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J. Control. Rel.256, 79–91 (2017).
  • Zheng B , ChenL , PanC-Cet al. Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy. Nanomedicine13(7), 769–785 (2018).
  • Kushwah V , KatiyarSS , AgrawalAK , GuptaRC , JainS. Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine14(5), 1629–1641 (2018).
  • Wang Y , WanG , LiZet al. PEGylated doxorubicin nanoparticles mediated by HN-1 peptide for targeted treatment of oral squamous cell carcinoma. Int. J. Pharm.525(1), 21–31 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.