589
Views
0
CrossRef citations to date
0
Altmetric
Review

Hydrogels as Potential Drug-Delivery Systems: Network Design and Applications

ORCID Icon, , , &
Pages 375-396 | Received 14 Sep 2020, Accepted 15 Mar 2021, Published online: 01 Apr 2021

References

  • Pawar VK , AwasthiR. Chronotherapy: an approach to synchronize drug delivery with circadian rhythm. J. Drug Deliv. Ther.1(1), 1–8 (2010).
  • Ravichandiran V , SubaV , UmadeviSet al. Chrono pharmaceutical drug delivery system. Biomed. Pharmacol. J.2(2), 333–338 (2015).
  • Caccavo D , CasconeS , LambertiG , BarbaA. Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem. Soc. Rev.47(7), 2357–2373 (2018).
  • Ahmed EM . Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res.6(2), 105–121 (2015).
  • Gupta P , VermaniK , GargS Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today.7(10), 569–579 (2002).
  • Hennink WE , van NostrumCF. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev.64, 223–236 (2012).
  • Hoffman AS . Hydrogels for biomedical applications. Ann. NY Acad. Sci.944(1), 62–73 (2001).
  • Hoare TR , KohaneDS. Hydrogels in drug delivery: progress and challenges. Polym. J.49(8), 1993–2007 (2008).
  • Zhang J , PeppasNA. Synthesis and characterization of pH-and temperature-sensitive poly (methacrylic acid)/poly (N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules33(1), 102–107 (2000).
  • Ganji F , Vasheghani-FarahaniE. Hydrogels in controlled drug delivery systems. Iran Polym. J.18(1), 63–88 (2009).
  • Khan S , UllahA , UllahK , RehmanN-u. Insight into hydrogels. Des. Monomers Polym.19(5), 456–478 (2016).
  • Erol O , PantulaA , LiuW , GraciasDH. Transformer hydrogels: a review. Adv. Mater. Technol.4(4), 1900043 (2019).
  • Sandeep C , HarikumarS , KanupriyA. Hydrogels: a smart drug delivery system. Int. J. Res. Pharm. Chem.2, 603–614 (2012).
  • Mantha S , PillaiS , KhayambashiPet al. Smart hydrogels in tissue engineering and regenerative medicine. Materials.12(20), 3323 (2019).
  • Shoukat H , PervaizF , NoreenSet al. Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polym Bull.1–23 (2019).
  • Lin C-C , MettersAT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev.58(12–13), 1379–1408 (2006).
  • Hoffman AS . Hydrogels for biomedical applications. Ann. N Y Acad. Sci.944(1), 62–73 (2001).
  • Garud A , SinghD , GarudN. Solid lipid nanoparticles (SLN): method, characterization and applications. Int. Curr. Pharm.1(11), 384–393 (2012).
  • Sionkowska A . Current research on the blends of natural and synthetic polymers as new biomaterials. Prog. Polym. Sci.36(9), 1254–1276 (2011).
  • Slaughter BV , KhurshidSS , FisherOZet al. Hydrogels in regenerative medicine. Adv Mater.21(32–33), 3307–3329 (2009).
  • Deligkaris K , TadeleTS , OlthuisW , vanden Berg A. Hydrogel-based devices for biomedical applications. Sensor. Actuat B – Chem.147(2), 765–774 (2010).
  • Hoffman AS . Hydrogels for biomedical applications. Adv. Drug Deliv. Rev.64, 18–23 (2012).
  • Gulrez SK , Al-AssafS , PhillipsGO. Hydrogels: methods of preparation, characterisation and applications. Progress in Molecular and Environmental Bioengineering – From Analysis and Modeling to Technology Applications.InTech (2011).
  • Ali A , AhmedS. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J. Agric. Food Chem.66(27), 6940–6967 (2018).
  • Zhao QS , JiQX , XingKet al. Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate. Carbohydr. Polym.76(3), 410–416 (2009).
  • Ebara M , KotsuchibashiY , UtoKet al. Smart hydrogels. Smart Biomaterials.Springer, 9–65 (2014).
  • Watanabe T , OhtsukaA , MuraseN , BarthP , GersondeK. NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magn Reson Med.35(5), 697–705 (1996).
  • Lalevée G , DavidL , MontembaultAet al. Highly stretchable hydrogels from complex coacervation of natural polyelectrolytes. Soft Matter.13(37), 6594–6605 (2017).
  • Wang J , SunS , WuBet al. Processable and luminescent supramolecular hydrogels from complex coacervation of polycations with lanthanide coordination polyanions. Macromolecules.52(22), 8643–8650 (2019).
  • Liu T , JiaoC , PengXet al. Super-strong and tough poly (vinyl alcohol)/poly (acrylic acid) hydrogels reinforced by hydrogen bonding. J. Mater. Chem. B.6(48), 8105–8114 (2018).
  • Song G , ZhangL , HeCet al. Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules.46(18), 7423–7435 (2013).
  • Join I , CalendarP. Boosting immunity: functional medicine tips on prevention & immunity boosting during the COVID-19 (coronavirus) outbreak. www.ifm.org/news-insights/boosting-immunity-functional-medicine-tips-prevention-immunity-boosting-covid-19-coronavirus-outbreak/
  • Jayaramudu T , RaghavendraGM , VaraprasadKet al. 5-Fluorouracil encapsulated magnetic nanohydrogels for drug-delivery applications. J. Appl. Polym.133(37), (2016). https://doi.org/10.1002/app.43921
  • Plieva FM , KarlssonM , AguilarMRet al. Pore structure of macroporous monolithic cryogels prepared from poly (vinyl alcohol). J. Appl. Polym.100(2), 1057–1066 (2006).
  • Hassan CM , PeppasNA. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers· PVA Hydrogels, Anionic Polymerisation Nanocomposites.Springer, 37–65 (2000).
  • Yu Z , LiY , FengZet al. Cu+-containing physically crosslinked chitosan hydrogels with shape memory. Express Polymer. Lett.13(9), 785–793 (2019).
  • Chang C , ZhangL , ZhouJet al. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym.82(1), 122–127 (2010).
  • Chang C , ZhangL. Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym.84(1), 40–53 (2011).
  • Varaprasad K , RaghavendraGM , JayaramuduTet al. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C.79, 958–971 (2017).
  • Varaprasad K , MohanYM , RavindraSet al. Hydrogel–silver nanoparticle composites: a new generation of antimicrobials. J. Appl. Polym.115(2), 1199–1207 (2010).
  • Jayaramudu T , RaghavendraGM , VaraprasadKet al. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr. Polym.92(2), 2193–2200 (2013).
  • Wang M , FangY , HuD. Preparation and properties of chitosan-poly (N-isopropylacrylamide) full-IPN hydrogels. React. Funct. Polym.48(1–3), 215–221 (2001).
  • Maitra J , ShuklaVK. Cross-linking in hydrogels-a review. Am. J. Polym. Sci.4(2), 25–31 (2014).
  • Sperinde JJ , GriffithLG. Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules.30(18), 5255–5264 (1997).
  • Iftime M-M , MorariuS , MarinL. Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr. polym.165, 39–50 (2017).
  • Ailincai D , TartauMititelu L , MarinL. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Deliv.25(1), 1080–1090 (2018).
  • Iftime MM . Marin L. Chiral betulin-imino-chitosan hydrogels by dynamic covalent sonochemistry. Ultrason. Sonochem.45, 238–247 (2018).
  • Iftime M-M , TartauLM , MarinL. New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release. Int. J. Biol. Macromol.160, 398–408 (2020).
  • Ailincai D , Mititelu-TartauL , MarinL. Citryl-imine-PEG-ylated chitosan hydrogels – promising materials for drug delivery applications. Int. J. Biol. Macromol.162, 1323–1337 (2020).
  • Zhang J , XiaoH , LiNet al. Synthesis and characterization of super-absorbent hydrogels based on hemicellulose. J. Appl. Polym.132(34), (2015). https://doi.org/10.1002/app.42441
  • Niu H , WangF , WeissR. Hydrophobic/hydrophilic triblock copolymers: synthesis and properties of physically cross-linked hydrogels. Macromolecules.48(3), 645–654 (2015).
  • Mahdavinia GR , EtemadiH , SoleymaniF. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydr Polym.128, 112–121 (2015).
  • Sunitha K , SadhanaR , MathewD , ReghunadhanNair C. Novel superabsorbent copolymers of partially neutralized methacrylic acid and acrylonitrile: synthesis, characterization and swelling characteristics. Des. Monomers Polym.18(6), 512–523 (2015).
  • Ngah WW , EndudC , MayanarR. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym.50(2), 181–190 (2002).
  • Bawa P , PillayV , ChoonaraYE , DuToit LC. Stimuli-responsive polymers and their applications in drug delivery. J. Biomed. Mater. Res.4(2), 022001 (2009).
  • Soppimath KS , AminabhaviTM , DaveAMet al. Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev. Ind. Pharm.28(8), 957–974 (2002).
  • Ferreira N , FerreiraL , CardosoVet al. Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur. Polym. J.99, 117–133 (2018).
  • Qiu Y , ParkK. Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev.53(3), 321–339 (2001).
  • Mahinroosta M , FarsangiZJ , AllahverdiA , ShakooriZ. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater. Today Chem.8, 42–55 (2018).
  • Kim SJ , ParkSJ , KimSI. Properties of smart hydrogels composed of polyacrylic acid/poly (vinyl sulfonic acid) responsive to external stimuli. Smart Mater. Struct.13(2), 317 (2004).
  • Liu RH , YuQ , BeebeDJ. Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. S.11(1), 45–53 (2002).
  • De SK , AluruNR. A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech. Mater.36(5–6), 395–410 (2004).
  • Falamarzian M , VarshosazJ. The effect of structural changes on swelling kinetics of polybasic/hydrophobic pH-sensitive hydrogels. Drug Dev. Ind. Pharm.24(7), 667–669 (1998).
  • Amin S , RajabnezhadS , KohliK. Hydrogels as potential drug delivery systems. Sci. Res. Essays.4(11), 1175–1183 (2009).
  • Stadler V , KirmseR , BeyerMet al. PEGMA/MMA copolymer graftings: generation, protein resistance, and a hydrophobic domain. Langmuir.24(15), 8151–8157 (2008).
  • Rivas BL , PooleySA , PereiraED , MaureiraA. Water-soluble polyelectrolytes with metal ion removal ability by using the liquid phase based retention technique. Macromolecular Symposia.Wiley Online Library (2006).
  • Son YK , KimJ-H , JeonYS , ChungDJ. Preparation and properties of PEG Modified PNVP hydrogel. Macromol. Res.15(6), 527–532 (2007).
  • Byun H , HongB , NamSYet al. Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromol. Res.16(3), 189–193 (2008).
  • Lei J , KimJ-H , JeonYS. Preparation and properties of alginate/polyaspartate composite hydrogels. Macromol. Res.16(1), 45–50 (2008).
  • Liu Y , LuW-L , WangJ-Cet al. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J. Control Rel.117(3), 387–395 (2007).
  • Chiu H-C , HsiueG-H , LeeY-P , HuangL-W. Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system. J. Biomater. Sci. Polym. Ed.10(5), 591–608 (1999).
  • siegel R , DusekK. Responsive gels: volume transition I. Adv. Polym. Sci.109, 233 (1993).
  • Ahn S-k , KasiRM , KimS-Cet al. Stimuli-responsive polymer gels. Soft Matter.4(6), 1151–1157 (2008).
  • Bajpai A , ShuklaSK , BhanuS , KankaneS. Responsive polymers in controlled drug delivery. Prog. Polym. Sci.33(11), 1088–1118 (2008).
  • Jeong B , GutowskaA. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol.20(7), 305–311 (2002).
  • Miyata T , UragamiT , NakamaeK. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev.54(1), 79–98 (2002).
  • Traitel T , CohenY , KostJ. Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials.21(16), 1679–1687 (2000).
  • Pluta J , KarolewiczB. Hydrogels: properties and application in the technology of drug form. I. The characteristic hydrogels. Polim. Med.34(2), 3–19 (2004).
  • Lee Y-J , PruzinskySA. Braun PV. Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response. Langmuir.20(8), 3096–3106 (2004).
  • Yetisen AK , JiangN , FallahiAet al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv Mater.29(15), 1606380 (2017).
  • Zhang R , TangM , BowyerAet al. Synthesis and characterization of a D-glucose sensitive hydrogel based on CM-dextran and concanavalin A. React. Funct. Polym.66(7), 757–767 (2006).
  • Prabaharan M , ManoJF. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci.6(12), 991–1008 (2006).
  • Ramanan RMK , ChellamuthuP , TangL , NguyenKT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol. Prog.22(1), 118–125 (2006).
  • Shim WS , KimSW , LeeDS. Sulfonamide-based pH-and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules.7(6), 1935–1941 (2006).
  • Miyata T , AsamiN , UragamiT. Preparation of an antigen-sensitive hydrogel using antigen−antibody bindings. Macromolecules.32(6), 2082–2084 (1999).
  • Lu ZR , KopečkováP , KopečekJ. Antigen responsive hydrogels based on polymerizable antibody Fab′ fragment. Macromol. Biosci.3(6), 296–300 (2003).
  • Chandrawati R . Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp. Biol. Med.241(9), 972–979 (2016).
  • Koetting MC , PetersJT , SteichenSD , PeppasNA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. Rev.93, 1–49 (2015).
  • Park TG , HoffmanAS. Synthesis and characterization of pH-and/or temperature-sensitive hydrogels. J. Appl. Polym.46(4), 659–671 (1992).
  • Jain A , GuptaY , JainSK. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J. Pharm. Pharm. Sci.10(1), 86–128 (2007).
  • Murdan S . Electro-responsive drug delivery from hydrogels. J. Control. Rel.92(1–2), 1–17 (2003).
  • Kaetsu I , UchidaK , MoritaY , OkuboM. Synthesis of electro-responsive hydrogels by radiation polymerization of sodium acrylate. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem.40(2), 157–160 (1992).
  • Mamada A , TanakaT , KungwatchakunD , IrieM .Photoinduced phase transition of gels. Macromolecules23(5), 1517–1519 (1990).
  • Suzuki A , IshiiT , MaruyamaY. Optical switching in polymer gels. J. Appl. Phys.80(1), 131–136 (1996).
  • Masteikova R , ChalupovaZ , SklubalovaZ. Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Med. Lith.39(2), 19–24 (2003).
  • Suzuki A , TanakaT. Phase transition in polymer gels induced by visible light. Nature346(6282), 345 (1990).
  • Kulkarni RV , SaB. Enteric delivery of ketoprofen through functionally modified poly (acrylamide-grafted-xanthan)-based pH-sensitive hydrogel beads: preparation, in vitro and in vivo evaluation. Journal of drug targeting.16(2), 167–77 (2008).
  • Ghasemi Tahrir F , GanjiF , ManiAR , KhodaverdiE. In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin. Drug Delivery23(3), 1028–36 (2016).
  • Shantha K , HardingD. Synthesis, characterisation and evaluation of poly [lactose acrylate-N-vinyl-2-pyrrolidinone] hydrogels for drug delivery. Eur. Polym. J.39(1), 63–8 (2003).
  • Altinisik A , YurdakocK. Chitosan/poly (vinyl alcohol) hydrogels for amoxicillin release. Polymer Bulletin71(3), 759–74 (2014).
  • Khade S , BeheraB , SagiriS , SinghV , ThirugnanamA , PalKet al. Gelatin–PEG based metronidazole-loaded vaginal delivery systems: preparation, characterization and in vitro antimicrobial efficiency. Iranian Polymer J.23(3), 171–84 (2014).
  • Abd El-Hady A , AbdEl-Rehim HA. Production of prednisolone by Pseudomonas oleovorans cells incorporated into PVP/PEO radiation crosslinked hydrogels. BioMed Res. Int.2004(4), 219–26 (2004).
  • Rao KM , MallikarjunaB , KrishnaRao K , SudhakarK , RaoKC , SubhaM. Synthesis and characterization of pH sensitive poly (hydroxy ethyl methacrylate-co-acrylamidoglycolic acid) based hydrogels for controlled release studies of 5-fluorouracil. Int. J. Polymeric Mat.Polymeric Biomat.62(11), 565–71 (2013).
  • Kamei N , MorishitaM , ChibaH , KavimandanNJ , PeppasNA , TakayamaK. Complexation hydrogels for intestinal delivery of interferon β and calcitonin. J. Control. Rel.134(2), 98–102 (2009).
  • El-Ghaffar MA , HashemM , El-AwadyM , RabieA. pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydrate Polymers89(2), 667–75 (2012).
  • Hamidi M , AzadiA , RafieiP. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev.60(15), 1638–1649 (2008).
  • Cruise GM , ScharpDS , HubbellJA. Characterization of permeability and network structure of interfacially photopolymerized poly (ethylene glycol) diacrylate hydrogels. Biomaterials19(14), 1287–1294 (1998).
  • Mason MN , MettersAT , BowmanCN , AnsethKS .Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules34(13), 4630–4635 (2001).
  • Ferreira JA , de OliveiraP , GrassiM , RomanazziG. Drug release from viscoelastic swelling polymeric platforms. SIAM J. Appl. Math.78(3), 1378–1401 (2018).
  • Caccavo D . An overview on the mathematical modeling of hydrogels' behavior for drug delivery systems. Int. J. Pharm.560, 175–190 (2019).
  • Lacey RE , TanquaryAC. Controlled Release of Biologically Active Agents.Springer, (1974).
  • Siepmann J , PeppasN. Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm Res.17(10), 1290–1298 (2000).
  • Lee KY , MooneyDJ. Alginate: properties and biomedical applications. Prog. Polym. Sci.37(1), 106–126 (2012).
  • Salehi A , ZhaoJ , CabelkaTD , LarsonRG. A unified multicomponent stress-diffusion model of drug release from non-biodegradable polymeric matrix tablets. J. Control. Rel.224, 43–58 (2016).
  • Hong X , WuZ , ChenLet al. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett.6(3), 191–199 (2014).
  • Laboratory SrS . Collagen Biodegradable Hydrogel Face Mask Sheet. (2021). www.theskinrepublic.com.au/products/face-mask-sheet-collagen-hydrogel-face-mask-sheet
  • Harrison IP , SpadaF. Hydrogels for atopic dermatitis and wound management: a superior drug delivery vehicle. Pharmaceutics.10(2), 71 (2018).
  • Zhai J , MantajJ , VllasaliuD. Ascorbyl palmitate hydrogel for local, intestinal delivery of macromolecules. Pharmaceutics.10(4), 188 (2018).
  • Zagórska-Dziok M , SobczakM. Hydrogel-based active substance release systems for cosmetology and dermatology application: a review. 12(5), 396 (2020).
  • Li J , WuC , ChuPK , GelinskyM. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R. Rep.140, 100543 (2020).
  • Singh B , SharmaN , ChauhanN. Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohydr. Polym.69(4), 631–643 (2007).
  • Das A , WadhwaS , SrivastavaA. Cross-linked guar gum hydrogel discs for colon-specific delivery of ibuprofen: formulation and in vitro evaluation. Drug Deliv.13(2), 139–142 (2006).
  • Van Tomme SR , StormG , HenninkWE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm.355(1–2), 1–18 (2008).
  • Hiemstra C , ZhongZ , Van TommeSRet al. In vitro and in vivo protein delivery from in situ forming poly (ethylene glycol)–poly (lactide) hydrogels. J. Control. Rel.119(3), 320–327 (2007).
  • Cooper RC , YangH. Hydrogel-based ocular drug delivery systems: emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J. Control. Rel.306, 29–39 (2019).
  • Torres-Luna C , FanX , DomszyRet al. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Eur. J. Pharm. Sci.154, 105503 (2020).
  • Lynch CR , KondiahPP , ChoonaraYEet al. Hydrogel biomaterials for application in ocular drug delivery. Front. Bioeng. Biotechnol.8, 228 (2020).
  • Miyazaki S , SuzukiS , KawasakiNet al. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm.229(1–2), 29–36 (2001).
  • Burgalassi S , ChetoniP , PanichiLet al. Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure lowering activity in rabbits. J. Ocul. Pharmacol. Ther.16(6), 497–509 (2000).
  • Xinming L , YingdeC , LloydAWet al. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Contact Lens Anterio.31(2), 57–64 (2008).
  • CANDORVISION . HYLO® GEL – when more intensive lubrication is required!. (2021). https://candorvision.com/professionals/hylogel/
  • Lomb B . LACRISERT (hydroxypropyl cellulose ophthalmic insert). (2021). www.bausch.com/ecp/our-products/rx-pharmaceuticals/rx-pharmaceuticals/lacrisert
  • Wang Y , XuH , WangJet al. Development of a thermally responsive nanogel based on chitosan–poly (N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery. J. Pharm. Sci.103(7), 2012–2021 (2014).
  • Subramanian B , AgarwalT , RoyAet al. Synthesis and characterization of PCL-DA: PEG-DA based polymeric blends grafted with SMA hydrogel as bio-degradable intrauterine contraceptive implant. Mater.Sci. Engin. C.116, 111159 (2020).
  • Mennini N , CasellaG , CirriMet al. Development of cyclodextrin hydrogels for vaginal delivery of dehydroepiandrosterone. J. Pharm. Pharmacol.68(6), 762–771 (2016).
  • Wang X , WangJ , WuW , LiH. Vaginal delivery of carboplatin-loaded thermosensitive hydrogel to prevent local cervical cancer recurrence in mice. Drug Deliv.23(9), 3544–3551 (2016).
  • Vanić Ž , HurlerJ , FerderberKet al. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel. J. Liposome Res.24(1), 27–36 (2014).
  • Chang JY , OhY-K , KongHSet al. Prolonged antifungal effects of clotrimazole-containing mucoadhesive thermosensitive gels on vaginitis. J. Control. Release.82(1), 39–50 (2002).
  • Adams TS , CrookT , CadierMA. A late complication following the insertion of hydrogel breast implants. J. Plast. Reconstr. Aesthet.60(2), 210–212 (2007).
  • Brunner CA , GrönerRW. Carboxy-methyl-cellulose hydrogel-filled breast implants – an ideal alternative? A report of five years' experience with this device. Can. J. Plast. Surg.14(3), 151–154 (2006).
  • Cascone S , LambertiG. Hydrogel-based commercial products for biomedical applications: a review. Int. J. Pharm.573, 118803 (2020).
  • Lee SC , KwonIK , ParkK. Hydrogels for delivery of bioactive agents: a historical perspective. Adv. Drug Deliv. Rev.65(1), 17–20 (2013).
  • Bajpai S , SagguSS. Insulin release behavior of poly (methacrylamide-co-N-vinyl-2-pyrrolidone-co-itaconic acid) hydrogel: an interesting probe. Part II. J MACROMOL SCI A.44(2), 153–157 (2007).
  • Ajji Z , OthmanI , RosiakJ. Production of hydrogel wound dressings using gamma radiation. Nucl. Instrum. Meth. B.229(3–4), 375–380 (2005).
  • Gupta A , KowalczukM , HeaselgraveWet al. The production and application of hydrogels for wound management: a review. Eur. Polym. J.111, 134–151 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.