259
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Oral Bioavailability and Gastroprotective Effect of Ibuprofen Through Mixed Polymer–Lipid Nanoparticles

ORCID Icon & ORCID Icon
Pages 363-374 | Received 05 Nov 2020, Accepted 01 Apr 2021, Published online: 14 Apr 2021

References

  • Li M , LuoZ , ZhaoY. Hybrid nanoparticles as drug carriers for controlled chemotherapy of cancer. Chem. Rec.16(4), 1833–1851 (2016).
  • Saha RN , VasanthakumarS , BendeG , SnehalathaM. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol.27(7), 215–231 (2010).
  • Dalmoro A , BochicchioS , NasibullinSFet al. Polymer–lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur. J. Pharm. Sci.121, 16–28 (2018).
  • Hao T , QiaoM , LiZ , ChenD. Progress in the study of pH and temperature sensitive biodegradable block copolymers. Acta Pharm. Sin.43(2), 123–127 (2008).
  • Yang X-Z , DouS , WangY-Cet al. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano6(6), 4955–4965 (2012).
  • Beija M , SalvayreR , Lauth-DeViguerie N , MartyJ-D. Colloidal systems for drug delivery: from design to therapy. Trends Biotech.30(9), 485–496 (2012).
  • Peetla C , StineA , LabhasetwarV. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm.6(5), 1264–1276 (2009).
  • Bose RJ , LeeS-H , ParkH. Lipid polymer hybrid nanospheres encapsulating antiproliferative agents for stent applications. J. Ind. Eng. Chem.36, 284–292 (2016).
  • Hallan SS , NidhiKaur V , JainV , MishraN. Development and characterization of polymer lipid hybrid nanoparticles for oral delivery of LMWH. Artif. Cells Nanomed. Biotechnol.45(8), 1631–1639 (2017).
  • Hu Y , HoerleR , EhrichM , ZhangC. Engineering the lipid layer of lipid–PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater.28, 149–159 (2015).
  • Yao C , WuM , ZhangCet al. Photoresponsive lipid–polymer hybrid nanoparticles for controlled doxorubicin release. Nanotechnology28(25), 255101 (2017).
  • Jain S , ValviPU , SwarnakarNK , ThankiK. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharm.9(9), 2542–2553 (2012).
  • Kumar R , SirilPF , JavidF. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C69, 1335–1344 (2016).
  • Dalmoro A , LambertiG , TitomanlioG , BarbaAA , D'amoreM. Enteric micro-particles for targeted oral drug delivery. AAPS Pharmscitech11(4), 1500–1507 (2010).
  • Gajra B , DalwadiC , PatelR. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using Box Behnken design. DARU J. Pharm. Sci.23(1), 3 (2015).
  • Rose F , WernJE , IngvarssonPTet al. Engineering of a novel adjuvant based on lipid–polymer hybrid nanoparticles: a quality-by-design approach. J. Control. Release210, 48–57 (2015).
  • Zhang RX , AhmedT , LiLY , LiJ , AbbasiAZ , WuXY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale9(4), 1334–1355 (2017).
  • Mandal B , BhattacharjeeH , MittalNet al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine9(4), 474–491 (2013).
  • Liu Y , LiK , PanJ , LiuB , FengS-S. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials31(2), 330–338 (2010).
  • Hu L , YangJ , LiuW , LiL. Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability. Drug Deliv.18(1), 90–95 (2011).
  • Reis CP , FerreiraJP , CandeiasSet al. Ibuprofen nanoparticles for oral delivery: proof of concept. J. Nanomed. Biother. Discov.4(1), 1 (2014).
  • Chan JM , ZhangL , YuetKPet al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials30(8), 1627–1634 (2009).
  • Mainardes RM , EvangelistaRC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm.290(1–2), 137–144 (2005).
  • Kwon H-Y , LeeJ-Y , ChoiS-W , JangY , KimJ-H. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids Surf. A182(1–3), 123–130 (2001).
  • Çağlar G , YalçınS , GündüzG , GündüzU. Poly (DL-lactic-co-glycolic acid) microparticle-doxorubicin formulations for anti-cancer drug delivery. Eur. J. Biol.73(1), 9–19 (2014).
  • Xie S , WangS , ZhaoB , HanC , WangM , ZhouW. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf. B67(2), 199–204 (2008).
  • Averineni RK , ShaviGV , GurramAKet al. PLGA 50: 50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation. Bull. Mater. Sci.35(3), 319–326 (2012).
  • Yu K , ZhaoJ , YuCet al. Role of four different kinds of polyethylenimines (PEIs) in preparation of polymeric lipid nanoparticles and their anticancer activity study. J. Cancer7(7), 872 (2016).
  • Mancini G , LopesRM , ClementePet al. Lecithin and parabens play a crucial role in tripalmitin-based lipid nanoparticle stabilization throughout moist heat sterilization and freeze-drying. Eur. J. Lipid Sci. Technol.117(12), 1947–1959 (2015).
  • Varshosaz J , GhaffariS , KhoshayandMR , AtyabiF , AzarmiS , KobarfardF. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J. Liposome Res.20(2), 97–104 (2010).
  • Vitorino C , CarvalhoFA , AlmeidaAJ , SousaJJ , PaisAA. The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf. B84(1), 117–130 (2011).
  • Santander-Ortega M , Jódar-ReyesA , CsabaN , Bastos-GonzálezD , Ortega-VinuesaJ. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J. Colloid Interface Sci.302(2), 522–529 (2006).
  • Sharma M , GuptaN , GuptaS. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv.6(80), 76621–76631 (2016).
  • Cho HJ , LeeDW , MarasiniNet al. Optimization of self-microemulsifying drug delivery system for telmisartan using Box–Behnken design and desirability function. J. Pharm. Pharmacol.65(10), 1440–1450 (2013).
  • Yalcin TE , Ilbasmis-TamerS , TakkaS. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int. J. Pharm.548(1), 255–262 (2018).
  • Zhang L , ChanJM , GuFXet al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano2(8), 1696–1702 (2008).
  • Werner ME , KarveS , SukumarRet al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials32(33), 8548–8554 (2011).
  • Wang H , ZhaoP , SuWet al. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials31(33), 8741–8748 (2010).
  • Anderson TH , MinY , WeirichKL , ZengH , FygensonD , IsraelachviliJN. Formation of supported bilayers on silica substrates. Langmuir25(12), 6997–7005 (2009).
  • Michel R , GradzielskiM. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. Int. J. Mol. Sci.13(9), 11610–11642 (2012).
  • Nurfazreen A , JuliantoBT , KhuriahA. Determination of a poorly soluble drug, ibuprofen in rat plasma by a simple HPLC analysis and its application in pharmacokinetic study. Int. J. Pharm. Sci. Res.6(1), 96102 (2015).
  • Langguth P , HanafyA , FrenzelDet al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev. Ind. Pharm.31(3), 319–329 (2005).
  • Attia MA , EnanET , HashishAAet al. Chemopreventive effect of 5-flurouracil polymeric hybrid PLGA–lecithin nanoparticles against colon dysplasia model in mice and impact on p53 apoptosis. Biomolecules11(1), 109 (2021).
  • Bjarnason I , ScarpignatoC , HolmgrenE , OlszewskiM , RainsfordKD , LanasA. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology154(3), 500–514 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.