102
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Bioengineered Solutions to Improve Cancer Immunotherapies

ORCID Icon & ORCID Icon
Pages 339-341 | Received 02 Feb 2021, Accepted 05 Mar 2021, Published online: 17 Mar 2021

References

  • Upadhaya S , Hubbard-LuceyVM , YuJX. Immuno-oncology drug development forges on despite COVID-19. Nat. Rev. Drug Discov.19(11), 751–752 (2020).
  • Labrijn AF , JanmaatML , ReichertJM , ParrenP. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov.18(8), 585–608 (2019).
  • Lee DW , GardnerR , PorterDLet al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood124(2), 188–195 (2014).
  • Compte M , HarwoodSL , MunozIGet al. A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat. Commun.9 (2018). doi:10.1038/s41467-018-07195
  • Roopenian DC , AkileshS. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol.7(9), 715–725 (2007).
  • Grevys A , NilsenJ , SandKMKet al. A human endothelial cell-based recycling assay for screening of FcRn targeted molecules. Nat. Commun.9(1), 621 (2018).
  • Martinelli G , BoisselN , ChevallierPet al. Complete hematologic and molecular response in adult patients with relapsed/refractory philadelphia chromosome-positive b-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a Phase II, single-arm, multicenter Study. J. Clin. Oncol.35(16), 1795–1802 (2017).
  • Thurber GM , SchmidtMM , WittrupKD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev.60(12), 1421–1434 (2008).
  • Xenaki KT , OliveiraS , VanBergen En Henegouwen PMP. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors. Front. Immunol.8, 1287 (2017).
  • Turecek PL , BossardMJ , SchoetensF , IvensIA. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci.105(2), 460–475 (2016).
  • Schlothauer T , HerterS , KollerCFet al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng. Des. Sel.29(10), 457–466 (2016).
  • Dall'acqua WF , KienerPA , WuH. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem.281(33), 23514–23524 (2006).
  • Larsen MT , KuhlmannM , HvamML , HowardKA. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther.4, 3 (2016).
  • Schmidt EGW , HvamML , AntunesFet al. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J. Biol. Chem.292(32), 13312–13322 (2017).
  • Pilati D , HowardKA. Albumin-based drug designs for pharmacokinetic modulation. Expert Opin. Drug Metab. Toxicol.16(9), 783–795 (2020).
  • Tijink BM , LaeremansT , BuddeMet al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol. Cancer Ther.7(8), 2288–2297 (2008).
  • O'connor-Semmes RL , LinJ , HodgeRJet al. GSK2374697, a novel albumin-binding domain antibody (AlbudAb), extends systemic exposure of exendin-4: first study in humans-PK/PD and safety. Clin. Pharmacol. Ther.96(6), 704–712 (2014).
  • Muller D , KarleA , MeibburgerB , HofigI , StorkR , KontermannRE. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J. Biol. Chem.282(17), 12650–12660 (2007).
  • Mcdonagh CF , HuhalovA , HarmsBDet al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol. Cancer Ther.11(3), 582–593 (2012).
  • Andersen JT , DalhusB , CameronJet al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat. Commun.3, 610 (2012).
  • Andersen JT , DalhusB , ViuffDet al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding. J. Biol. Chem.289(19), 13492–13502 (2014).
  • Larsen MT , RawsthorneH , ScheldeKK , Dagnaes-HansenF , CameronJ , HowardKA. Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. J. Control Release287, 132–141 (2018).
  • Mandrup OA , OngSC , LykkemarkSet al. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun Biol. 4(1), 310 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.