124
Views
1
CrossRef citations to date
0
Altmetric
Review

Quantitative and Specific Molecular Imaging of Cancer With Labeled Engineered Monoclonal Antibody Fragments

, &
Pages 345-358 | Published online: 09 Mar 2011

Bibliography

  • Holliger P , HudsonPJ. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol.23(9), 1126–1136 (2005).
  • Carter P , MerchantAM. Engineering antibodies for imaging and therapy. Curr. Opin. Biotechnol.8(4), 449–454 (1997).
  • Wu AM , OlafsenT. Antibodies for molecular imaging of cancer. Cancer J.14(3), 191–197 (2008).
  • Paul WE . Fundamental Immunology (6th Edition). Lippincott Williams & Wilkins, PA, USA 126–129 (2008).
  • Sompayrac L . B Cells and Antibodies. In: How the Immune System Works (2nd Edition). Blackwell Science, Oxford, UK (2003).
  • Jain M , KamalN, BatraSK. Engineering antibodies for clinical applications. Trends Biotechnol.25(7), 307–316 (2007).
  • Batra SK , JainM, WittelUA, ChauhanSC, ColcherD. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol.13(6), 603–608 (2002).
  • van Dongen G , VisserGWM, HoogeM, De Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist12(12), 1379–1389 (2007).
  • Weiner LM , SuranaR, WangSZ. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol.10(5), 317–327 (2010).
  • Ludwig JA , WeinsteinJN. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5(11), 845–856 (2005).
  • Porter RR . Hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem. J.73, 119–126 (1959).
  • Nisonoff A , WisslerFC, LipmanLN, WoernleyDL. Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch. Biochem. Biophys.89(2), 230–244 (1960).
  • Kenanova V , WuAM. Tailoring antibodies for radionuclide delivery. Expert Opin. Drug Deliv.3(1), 53–70 (2006).
  • Huston JS , McCartneyJ, TaiMSet al. Medical applications of single-chain antibodies. Int. Rev. Immunol 10(2–3), 195–217 (1993).
  • Begent RHJ , VerhaarMJ, ChesterKAet al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. 2(9), 979–984 (1996).
  • Reiter Y , BrinkmannU, LeeBK, PastanI. Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nat. Biotechnol.14(10), 1239–1245 (1996).
  • Nilsson FY , TolmachevV. Affibody® molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr. Opin. Drug Discov. Dev.10(2), 167–175 (2007).
  • Tolmachev V , OrlovaA, NilssonFY, FeldwischJ, WennborgA, AbrahmsenL. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin. Biol. Ther.7(4), 555–568 (2007).
  • Todorovska A , RooversRC, DolezalO, KorttAA, HoogenboomHR, HudsonPJ. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods248(1–2), 47–66 (2001).
  • Cuesta AM , Sainz-PastorN, BonetJ, Baldomero Oliva B, A‘lvarez-Vallina L. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol.28(7), 355–62 (2010)
  • Kortt AA , DolezalO, PowerBE, HudsonPJ. Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol. Eng.18(3), 95–108 (2001).
  • Sheikholvaezin A , ErikssonD, AhlstromKR, JohanssonL, StigbrandT. Tumor radioimmunolocalization in nude mice by mono- and divalent-single-chain Fv antiplacental alkaline phosphatase antibodies. Cancer Biother. Radiopharm.22(1), 64–72 (2007).
  • Xiong CY , NatarajanA, ShiXB, DenardoGL, DenardoSJ. Development of tumor targeting anti-MUC-1 multimer: effects of di-scFv unpaired cysteine location on PEGylation and tumor binding. Protein Eng. Des. Sel.19(8), 359–367 (2006).
  • Berndorff D , BorkowskiS, MoosmayerDet al. Imaging of tumor angiogenesis using Tc-99m-labeled human recombinant anti-ED-B fibronectin antibody fragments. J. Nucl. Med. 47(10), 1707–1716 (2006).
  • Hu SZ , ShiveryL, RaubitschekAet al. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-C(h)3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56(13), 3055–3061 (1996).
  • Cuesta AM , Sanchez-MartinD, SanzLet al. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences. PLoS One4(4), 9 (2009).
  • Ferl GZ , KenanovaV, WuAM, DiStefanoJJ. A two-tiered physiologically based model for dually labeled single-chain Fv–Fc antibody fragments. Mol. Cancer Ther.5(6), 1550–1558 (2006).
  • Adams GP , SchierR, MarshallKet al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58(3), 485–490 (1998).
  • Sundaresan G , YazakiPJ, ShivelyJEet al. I-124-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J. Nucl. Med. 44(12), 1962–1969 (2003).
  • Silacci M , BrackSS, SpathNet al. Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng. Des. Sel. 19(10), 471–478 (2006).
  • Kelly MP , LeeFT, TahtisKet al. Tumor targeting by a multivalent single-chain Fv (scFv) anti-Lewis Y antibody construct. Cancer Biother. Radiopharm. 23(4), 411–423 (2008).
  • Heo MA , KimSH, KimSYet al. Functional expression of single-chain variable fragment antibody against c-MET in the cytoplasm of Escherichia coli. Protein Expr. Purif. 47(1), 203–209 (2006).
  • Schneider DW , HeitnerT, AlickeBet al. In vivo biodistribution, PET imaging, and tumor accumulation of Y-86- and In-111-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J. Nucl. Med.50(3), 435–443 (2009).
  • Leyton JV , OlafsenT, ShermanMAet al. Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Protein Eng. Des. Sel. 22(3), 209–216 (2009).
  • Santimaria M , MoscatelliG, VialeGLet al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. 9(2), 571–579 (2003).
  • Perez L , AyalaM, PimentelGet al. A multivalent recombinant antibody fragment specific for carcinoembryonic antigen. Biotechnol. Appl. Biochem. 43, 39–48 (2006).
  • Wei LH , OlafsenT, RaduCet al. Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J. Nucl. Med. 49(11), 1828–1835 (2008).
  • Kobayashi H , SakaharaH, SagaTet al. A human mouse chimeric monoclonal antibody against Ca-125 for radioimmunoimaging of ovarian-cancer. Cancer Immunol. Immunother. 37(3), 143–149 (1993).
  • Ghetie V , PopovS, BorvakJet al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 15(7), 637–640 (1997).
  • Kenanova V , OlafsenT, CrowDMet al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv–Fc antibody fragments. Cancer Res. 65(2), 622–631 (2005).
  • Yazaki PJ , KassaT, CheungCWet al. Biodistribution and tumor imaging of an anti-CEA single-chain antibody–albumin fusion protein. Nucl. Med. Biol. 35(2), 151–158 (2008).
  • Kontermann RE . Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs23(2), 93–109 (2009).
  • Kobayashi H , SakaharaH, HosonoMet al. Improved clearance of radiolabeled biotinylated monoclonal antibody following the infusion of avidin as a ‘chase‘ without decreased accumulation in the target tumor. J. Nucl. Med. 35(10), 1677–1684 (1994).
  • Milstein C , CuelloAC. Hybrid hybridomas and their use in immunohistochemistry. Nature305(5934), 537–540 (1983).
  • Goldenberg DM , RossiEA, SharkeyRM, McBrideWJ, Chang C-H. Multifunctional antibodies by the dock-and-lock method for improved cancer imaging and therapy by pretargeting. J. Nucl. Med.49(1), 158–163 (2008).
  • Ledoussal JM , GruazguyonA, MartinM, GautherotE, DelaageM, BarbetJ. Targeting of indium-111-labeled bivalent hapten to human-melanoma mediated by bispecific monoclonal-antibody conjugates – imaging of tumors hosted in nude-mice. Cancer Res.50(11), 3445–3452 (1990).
  • Sharkey RM , McBrideWJ, KaracayHet al. A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res. 63(2), 354–363 (2003).
  • McBride WJ , ZanzonicoP, SharkeyRMet al. Bispecific antibody pretargeting pet (immunoPET) with an I-124-labeled hapten-peptide. J. Nucl. Med. 47(10), 1678–1688 (2006).
  • Somasundaram C , MatzkuS, SchuhmacherJ, ZollerM. Development of a bispecific monoclonal-antibody against a Ga-67 chelate and the human melanoma-associated antigen p97 for potential use in pretargeted immunoscintigraphy. Cancer Immunol. Immunother.36(5), 337–345 (1993).
  • Ledoussal JM , ChetanneauA, GruazguyonAet al. Bispecific monoclonal antibody-mediated targeting of an indium-111-labeled DTPA dimer to primary colorectal tumors – pharmacokinetics, biodistribution, scintigraphy and immune-response. J. Nucl. Med. 34(10), 1662–1671 (1993).
  • Vuillez JP , MoroD, BrichonPYet al. Two-step immunoscintigraphy for non-small-cell lung cancer staging using a bispecific anti-CEA/anti-indium-DTPA antibody and an indium-111-labeled DTPA dimer. J. Nucl. Med. 38(4), 507–511 (1997).
  • Barbet J , PeltierP, BardetSet al. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J. Nucl. Med. 39(7), 1172–1178 (1998).
  • Hosono M , HosonoMN, Kraeber-BodereFet al. Two-step targeting and dosimetry for small cell lung cancer xenograft with anti-NCAM/antihistamine bispecific antibody and radioiodinated bivalent hapten. J. Nucl. Med. 40(7), 1216–1221 (1999).
  • Boerman OC , KranenborgM, OosterwijkEet al. Pretargeting of renal cell carcinoma: Improved tumor targeting with a bivalent chelate. Cancer Res. 59(17), 4400–4405 (1999).
  • Aarts F , BoermanOC, SharkeyRMet al. Pretargeted radioimmunoscintigraphy in patients with primary colorectal cancer using a bispecific anticarcinoembryonic antigen CEA x anti-di-diethylenetriaminepentaacetic acid F(ab´)2 antibody. Cancer 116(4), 1111–1117 (2010).
  • Kraeber-Bodere F , SalaunPY, OudouxA, GoldenbergDM, ChatalJF, BarbetJ. Pretargeted radioimmunotherapy in rapidly progressing, metastatic, medullary thyroid cancer. Cancer116(4), 1118–1125 (2010).
  • Karacay H , McBrideWJ, GriffithsGLet al. Experimental pretargeting studies of cancer with a humanized anti-CEA x murine anti- In-DTPA bispecific antibody construct and a Tc-99m-Re-188-labeled peptide. Bioconjug. Chem. 11(6), 842–854 (2000).
  • Hnatowich DJ , VirziF, RusckowskiM. Investigations of avidin and biotin for imaging applications. J. Nucl. Med.28(8), 1294–1302 (1987).
  • Kalofonos HP , RusckowskiM, SiebeckerDAet al. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies – preliminary communication. J. Nucl. Med. 31(11), 1791–1796 (1990).
  • Lewis MR , WangM, AxworthyDBet al. In vivo evaluation of pretargeted Cu-64 for tumor imaging and therapy. J. Nucl. Med.44(8), 1284–1292 (2003).
  • Paganelli G , MagnaniP, ZitoFet al. 3-step monoclonal-antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 51(21), 5960–5966 (1991).
  • Yao ZS , ZhangML, KobayashiHet al. Improved targeting of radiolabeled streptavidin in tumors pretargeted with biotinylated monoclonal-antibodies through an avidin chase. J. Nucl. Med. 36(5), 837–841 (1995).
  • Rusckowski M , QuT, ChangF, HnatowichDJ. Pretargeting using peptide nucleic acid. Cancer80(12), 2699–2705 (1997).
  • Liu GZ , Mang‘eraK, LiuN, GuptaS, RusckowskiM, HnatowichDJ. Tumor pretargeting in mice using Tc-99m-labeled morpholino, a DNA analog. J. Nucl. Med.43(3), 384–391 (2002).
  • Wang Y , ChangF, ZhangYet al. Pretargeting with amplification using polymeric peptide nucleic acid. Bioconjug. Chem. 12(5), 807–816 (2001).
  • He J , LiuGZ, GuptaS, ZhangYM, RusckowskiM, HnatowichDJ. Amplification targeting: a modified pretargeting approach with potential for signal amplification – proof of a concept. J. Nucl. Med.45(6), 1087–1095 (2004).
  • Verel I , VisserGWM, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J. Nucl. Med.46, 164S–171S (2005).
  • Wu AM . Antibodies and antimatter: the resurgence of immuno-PET. J. Nucl. Med.50(1), 2–5 (2009).
  • Aerts H , DuboisL, PerkLet al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med. 50(1), 123–131 (2009).
  • Achilefu S . Lighting up tumors with receptor-specific optical molecular probes. Technol. Cancer Res. Treat.3(4), 393–409 (2004).
  • Mahmood U , TungCH, TangY, WeisslederR. Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice. Radiology224(2), 446–451 (2002).
  • Hilderbrand SA , WeisslederR. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol.14(1), 71–79 (2010).
  • Kosaka N , OgawaM, ChoykePL, KobayashiH. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol.5(9), 1501–1511 (2009).
  • Ntziachristos V , BremerC, WeisslederR. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol.13(1), 195–208 (2003).
  • Ntziachristos V , RipollJ, WeisslederR. Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt. Lett.27(5), 333–335 (2002).
  • Ogawa M , KosakaN, ChoykePL, KobayashiH. H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. ACS Chem. Biol.4(7), 535–546 (2009).
  • Tanaka K , MiuraT, UmezawaNet al. Rational design of fluorescein-based fluorescence probes, mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123(11), 2530–2536 (2001).
  • Miura T , UranoY, TanakaK, NaganoT, OhkuboK, FukuzumiS. Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer. J. Am. Chem. Soc.125(28), 8666–8671 (2003).
  • Kamiya M , KobayashiH, HamaYet al. An enzymatically activated fluorescence probe for targeted tumor imaging. J. Am. Chem. Soc. 129(13), 3918–3929 (2007).
  • Urano Y , AsanumaD, HamaYet al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15(1), 104–109 (2009).
  • Kiyose K , KojimaH, NaganoT. Functional near-infrared fluorescent probes. Chem. Asian J.3(3), 506–515 (2008).
  • Jiang PJ , GuoZJ. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev.248(1–2), 205–229 (2004).
  • Mahmood U , WeisslederR. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther.2(5), 489–496 (2003).
  • Tung CH , BredowS, MahmoodU, WeisslederR. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug. Chem.10(5), 892–896 (1999).
  • Tung CH , MahmoodU, BredowS, WeisslederR. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res.60(17), 4953–4958 (2000).
  • Bremer C , BredowS, MahmoodU, WeisslederR, TungCH. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology221(2), 523–529 (2001).
  • Bremer C , TungCH, BogdanovA, WeisslederR. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology222(3), 814–818 (2002).
  • Tung CH , GersztenRE, JafferFA, WeisslederR. A novel near-infrared fluorescence sensor for detection of thrombin activation in blood. Chembiochem3(2–3), 207–211 (2002).
  • Shah K , TungCH, ChangCHet al. In vivo imaging of HIV protease activity in amplicon vector-transduced gliomas. Cancer Res.64(1), 273–278 (2004).
  • Galande AK , HilderbrandSA, WeisslederR, TungCH. Enzyme-targeted fluorescent imaging probes on a multiple antigenic peptide core. J. Med. Chem.49(15), 4715–4720 (2006).
  • Chen JQ , TungCH, MahmoodUet al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation105(23), 2766–2771 (2002).
  • Bremer C , NtziachristosV, WeitkampB, TheilmeierG, HeindelW, WeisslederR. Optical imaging of spontaneous breast tumors using protease sensing ‘smart‘ optical probes. Invest. Radiol.40(6), 321–327 (2005).
  • Jaffer FA , TungCH, GersztenRE, WeisslederR. In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler. Thromb. Vasc. Biol.22(11), 1929–1935 (2002).
  • Ogawa M , KosakaN, LongmireMR, UranoY, ChoykePL, KobayashiH. Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol. Pharm.6(2), 386–395 (2009).
  • Jares-Erijman EA , JovinTM. FRET imaging. Nat. Biotechnol.21(11), 1387–1395 (2003).
  • Kiyokawa E , HaraS, NakamuraT, MatsudaM. Fluorescence (Förster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci.97(1), 8–15 (2006).
  • Elias DR , ThorekDLJ, ChenAK, CzuprynaJ, TsourkasA. In vivo imaging of cancer biomarkers using activatable molecular probes. Cancer Biomark.4(6), 287–305 (2008).
  • Ogawa M , ReginoCAS, ChoykePL, KobayashiH. In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Mol. Cancer Ther.8(1), 232–239 (2009).
  • Ogawa M , KosakaN, ChoykePL, KobayashiH. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res.69(4), 1268–1272 (2009).
  • Kobayashi H , LongmireMR, OgawaM, ChoykePL, KawamotoS. Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol.11(6), 589–595 (2010).
  • Kobayashi H , OgawaM, AlfordR, ChoykePL, UranoY. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev.110(5), 2620–2640 (2010).
  • Xu H , BaidooK, GunnAJet al. Design, synthesis, and characterization of a dual modality positron emission tomography and fluorescence imaging agent for monoclonal antibody tumor-targeted imaging. J. Med. Chem. 50(19), 4759–4765 (2007).
  • Ogawa M , ReginoCAS, SeidelJet al. Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug. Chem. 20(11), 2177–2184 (2009).
  • Yang J , LimEK, LeeHJet al. Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29(16), 2548–2555 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.