121
Views
0
CrossRef citations to date
0
Altmetric
Review

Nucleic Acid Therapeutics: Concepts for Targeted Delivery to Solid Tumors

Pages 91-107 | Published online: 25 Jun 2010

Bibliography

  • Hanahan D , WeinbergRA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Folkman J . Role of angiogenesis in tumor growth and metastasis. Semin. Oncol.29(6 Suppl. 16), 15–18 (2002).
  • Apostolopoulos C , CastellanoL, StebbingJ, GiamasG. Bendamustine as a model for the activity of alkylating agents. Future Oncol.4(3), 323–332 (2008).
  • Longley DB , HarkinDP, JohnstonPG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer3(5), 330–338 (2003).
  • Gascoigne KE , TaylorSS. How do anti-mitotic drugs kill cancer cells? J. Cell. Sci.122(15), 2579–2585 (2009).
  • Baguley BC . Multidrug resistance in cancer. Methods Mol. Biol.596, 1–14 (2009).
  • Drablos F , FeyziE, AasPAet al. Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair (Amst.) 3(11), 1389–1407 (2004).
  • Klein S , McCormickF, LevitzkiA. Killing time for cancer cells. Nat. Rev. Cancer5(7), 573–580 (2005).
  • Riely GJ . Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Thorac. Oncol.3(6 Suppl. 2), S146–S149 (2008).
  • Klein S , LevitzkiA. Targeting the EGFR and the PKB pathway in cancer. Curr. Opin. Cell Biol.21(2), 185–193 (2009).
  • Iyer AK , KhaledG, FangJ, MaedaH. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today11(17–18), 812–818 (2006).
  • Torchilin VP . Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J.9(2), E128–E147 (2007).
  • Hilger RA , RichlyH, GrubertMet al. Pharmacokinetics (PK) of a liposomal encapsulated fraction containing doxorubicin and of doxorubicin released from the liposomal capsule after intravenous infusion of Caelyx/Doxil. Int. J. Clin. Pharmacol. Ther. 43(12), 588–589 (2005).
  • Twelves CJ , DobbsNA, AldhousM, HarperPG, RubensRD, RichardsMA. Comparative pharmacokinetics of doxorubicin given by three different schedules with equal dose intensity in patients with breast cancer. Cancer Chemother. Pharmacol.28(4), 302–307 (1991).
  • Verschraegen CF , SkubitzK, DaudAet al. A Phase I and pharmacokinetic study of paclitaxel poliglumex and cisplatin in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 63(5), 903–910 (2009).
  • Aghi M , HochbergF, BreakefieldXO. Prodrug activation enzymes in cancer gene therapy. J. Gene Med.2(3), 148–164 (2000).
  • Lo HW , DayCP, HungMC. Cancer-specific gene therapy. Adv. Genet.54, 235–255 (2005).
  • Kelly EJ , RussellSJ. MicroRNAs and the regulation of vector tropism. Mol. Ther.17(3), 409–416 (2009).
  • Sahu NK , ShilakariG, NayakA, KohliDV. Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr. Pharm. Biotechnol.8(5), 291–304 (2007).
  • Kang MH , ReynoldsCP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res.15(4), 1126–1132 (2009).
  • Fire A , XuS, MontgomeryMK, KostasSA, DriverSE, MelloCC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806–811 (1998).
  • Leung RK , WhittakerPA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther.107(2), 222–239 (2005).
  • Whitehead KA , LangerR, AndersonDG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8(2), 129–138 (2009).
  • Tiemann K , RossiJJ. RNAi-based therapeutics – current status, challenges and prospects. EMBO Mol. Med.1(3), 142–151 (2009).
  • Kaur H , BabuBR, MaitiS. Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem. Rev.107(11), 4672–4697 (2007).
  • Plank C , ZaunerW, WagnerE. Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv. Drug Deliv. Rev.34(1), 21–35 (1998).
  • Blaese RM , CulverKW, MillerADet al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270(5235), 475–480 (1995).
  • Cavazzana-Calvo M , Hacein-BeyS, De Saint BG et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science288(5466), 669–672 (2000).
  • Hacein-Bey-Abina S , GarrigueA, WangGPet al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118(9), 3132–3142 (2008).
  • Ehrhardt A , HaaseR, SchepersA, DeutschMJ, LippsHJ, BaikerA. Episomal vectors for gene therapy. Curr. Gene Ther.8(3), 147–161 (2008).
  • Ivics Z , IzsvakZ. Transposons for gene therapy! Curr. Gene Ther.6(5), 593–607 (2006).
  • Freimuth P , PhilipsonL, CarsonSD. The coxsackievirus and adenovirus receptor. Curr. Top. Microbiol. Immunol.323, 67–87 (2008).
  • Raper SE , YudkoffM, ChirmuleNet al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum. Gene Ther. 13(1), 163–175 (2002).
  • Everts M , CurielDT. Transductional targeting of adenoviral cancer gene therapy. Curr. Gene Ther.4(3), 337–346 (2004).
  • Kreppel F , GackowskiJ, SchmidtE, KochanekS. Combined genetic and chemical capsid modifications enable flexible and efficient de- and retargeting of adenovirus vectors. Mol. Ther.12(1), 107–117 (2005).
  • Kreppel F , KochanekS. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol. Ther.16(1), 16–29 (2008).
  • Nemunaitis J , EdelmanJ. Selectively replicating viral vectors. Cancer Gene Ther.9(12), 987–1000 (2002).
  • Wilson JM . Gendicine. The first commercial gene therapy product. Hum. Gene Ther.16(9), 1014–1015 (2005).
  • Olins DE , OlinsAL, Von Hippel PH. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA 501. J. Mol. Biol.24, 157–176 (1967).
  • Olins DE , OlinsAL, Von Hippel PH. On the structure and stability of DNA–protamine and DNA–polypeptide complexes. J. Mol. Biol.33, 265–281 (1968).
  • Shapiro JT , LengM, FelsenfeldG. Desoxyribonucleic acid–polylysine complexes. Structure and nucleotide specifity. Biochemistry8, 3219–3232 (1969).
  • Felgner PL , GadekTR, HolmMet al. Lipofection. A highly efficient, lipid mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).
  • Konstan MW , WagenerJS, HilliardKAet al. Single dose escalation study to evaluate safety of nasal administration of CFTR001 gene transfer vector to subjects with cystic fibrosis. Mol. Ther. 7, S386 (2003).
  • Hyde SC , PringleIA, AbdullahSet al. Cpg-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol. 26(5), 549–551 (2008).
  • Sidi AA , OhanaP, BenjaminSet al. Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to Bacillus Calmette–Guerin. J. Urol. 180(6), 2379–2383 (2008).
  • Wang J , SuiM, FanW. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug. Metab.11(2), 129–41 (2010).
  • Torchilin VP . Passive and active drug targeting. Drug delivery to tumors as an example. Handb. Exp. Pharmacol.(197), 3–53 (2010).
  • Yotsumoto F , SanuiA, FukamiTet al. Efficacy of ligand-based targeting for the egf system in cancer. Anticancer Res. 29(11), 4879–4885 (2009).
  • Driessen WH , OzawaMG, ArapW, PasqualiniR. Ligand-directed cancer gene therapy to angiogenic vasculature. Adv. Genet.67, 103–121 (2009).
  • Gunther M , WagnerE, OgrisM. Specific targets in tumor tissue for the delivery of therapeutic genes. Curr. Med. Chem. Anticancer Agents5(2), 157–171 (2005).
  • Pradhan P , BanerjeeR, BahadurD, KochC, MykhaylykO, PlankC. Targeted magnetic liposomes loaded with doxorubicin. Methods Mol. Biol.605, 279–293 (2010).
  • Tashjian JA , DewhirstMW, NeedhamD, VigliantiBL. Rationale for and measurement of liposomal drug delivery with hyperthermia using non-invasive imaging techniques. Int. J. Hyperthermia24(1), 79–90 (2008).
  • Li L , Ten Hagen TL, Schipper D et al. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Release143(2), 274–279 (2010).
  • Mackay JA , ChilkotiA. Temperature sensitive peptides. Engineering hyperthermia-directed therapeutics. Int. J. Hyperthermia24(6), 483–495 (2008).
  • Bartlett DW , SuH, HildebrandtIJ, WeberWA, DavisME. Impact of tumor-specific targeting on the biodistribution and efficacy of sirna nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA104(39), 15549–15554 (2007).
  • Philipp A , MeyerM, WagnerE. Extracellular targeting of synthetic therapeutic nucleic acid formulations. Curr. Gene Ther.8(5), 324–334 (2008).
  • Xenariou S , GriesenbachU, FerrariSet al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther. 13(21), 1545–1552 (2006).
  • Berg K , FoliniM, PrasmickaiteLet al. Photochemical internalization: a new tool for drug delivery. Curr. Pharm. Biotechnol. 8(6), 362–372 (2007).
  • Falk MH , IsselsRD. Hyperthermia in oncology. Int. J. Hyperthermia17(1), 1–18 (2001).
  • Wust P , HildebrandtB, SreenivasaGet al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002).
  • Karino T , KogaS, MaetaM. Experimental studies of the effects of local hyperthermia on blood flow, oxygen pressure and pH in tumors. Jpn. J. Surg.18(3), 276–283 (1988).
  • Song CW , ParkHJ, LeeCK, GriffinR. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperthermia21(8), 761–767 (2005).
  • Hauck ML , DewhirstMW, BignerDD, ZalutskyMR. Local hyperthermia improves uptake of a chimeric monoclonal antibody in a subcutaneous xenograft model. Clin. Cancer Res.3(1), 63–70 (1997).
  • Kong G , BraunRD, DewhirstMW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res.60(16), 4440–4445 (2000).
  • Kong G , DewhirstMW. Hyperthermia and liposomes. Int. J. Hyperthermia15(5), 345–370 (1999).
  • Issels RD , SchlemmerM, LindnerLH. The role of hyperthermia in combined treatment in the management of soft tissue sarcoma. Curr. Oncol. Rep.8(4), 305–309 (2006).
  • Chang E , ChalikondaS, FriedlJet al. Targeting vaccinia to solid tumors with local hyperthermia. Hum. Gene Ther. 16(4), 435–444 (2005).
  • Vekris A , MaurangeC, MoonenCet al. Control of transgene expression using local hyperthermia in combination with a heat-sensitive promoter. J. Gene Med. 2(2), 89–96 (2000).
  • Madio DP , Van Gelderen P, Despres D et al. On the feasibility of MRI-guided focused ultrasound for local induction of gene expression. J. Magn. Reson. Imaging8(1), 101–104 (1998).
  • Hoekstra D , RejmanJ, WasunguL, ShiF, ZuhornI. Gene delivery by cationic lipids: in and out of an endosome. Biochem. Soc. Trans.35(1), 68–71 (2007).
  • Behr JP . The proton sponge: a trick to enter cells the viruses did not exploit. Chimia51(1–2), 34–36 (1997).
  • Cho YW , KimJD, ParkK. Polycation gene delivery systems: escape from endosomes to cytosol. J. Pharm. Pharmacol.55(6), 721–734 (2003).
  • Ogris M , BrunnerS, SchullerS, KircheisR, WagnerE. Pegylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther.6(4), 595–605 (1999).
  • Wightman L , KircheisR, RosslerVet al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3(4), 362–372 (2001).
  • Boussif O , Lezoualc‘hF, ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
  • Kircheis R , KichlerA, WallnerGet al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. 4(5), 409–418 (1997).
  • Goula D , BenoistC, ManteroS, MerloG, LeviG, DemeneixBA. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther.5(9), 1291–1295 (1998).
  • Finsinger D , RemyJS, ErbacherP, KochC, PlankC. Protective copolymers for nonviral gene vectors. Synthesis, vector characterization and application in gene delivery. Gene Ther.7(14), 1183–1192 (2000).
  • Clamme JP , AzoulayJ, MelyY. Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys. J.84(3), 1960–1968 (2003).
  • Boeckle S , von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med.6(10), 1102–1111 (2004).
  • Chollet P , FavrotMC, HurbinA, CollJL. Side-effects of a systemic injection of linear polyethylenimine–DNA complexes. J. Gene Med.4(1), 84–91 (2002).
  • Ogris M . Nucleic acid based therapeutics for tumor therapy. Anticancer Agents Med. Chem.6(6), 563–570 (2006).
  • Fahrmeir J , GuntherM, TietzeN, WagnerE, OgrisM. Electrophoretic purification of tumor-targeted polyethylenimine-based polyplexes reduces toxic side effects in vivo. J. Control. Release122, 236–245 (2007).
  • Fischer D , BieberT, LiY, ElsasserHP, KisselT. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res.16(8), 1273–1279 (1999).
  • Pack DW , HoffmanAS, PunS, StaytonPS. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov.4(7), 581–593 (2005).
  • Kloeckner J , WagnerE, OgrisM. Degradable gene carriers based on oligomerized polyamines. Eur. J. Pharm. Sci.29(5), 414–425 (2006).
  • Russ V , ElfbergH, ThomaC, KloecknerJ, OgrisM, WagnerE. Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Ther.15(1), 18–29 (2008).
  • Russ V , GuntherM, HalamaA, OgrisM, WagnerE. Oligoethylenimine-grafted polypropylenimine dendrimers as degradable and biocompatible synthetic vectors for gene delivery. J. Control. Release132(2), 131–140 (2008).
  • Klutz K , RussV, WillhauckMJet al. Targeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter gene. Clin. Cancer Res. 15(19), 6079–6086 (2009).
  • Schwerdt A , ZintchenkoA, ConciaMet al. Hyperthermia induced targeting of thermosensitive gene carriers to tumors. Hum. Gene Ther. 19(11), 1283–1292 (2008).
  • Zintchenko A , OgrisM, WagnerE. Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug. Chem.17(3), 766–772 (2006).
  • Dreher MR , SimnickAJ, FischerKet al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130(2), 687–694 (2008).
  • Shir A , OgrisM, WagnerE, LevitzkiA. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med.3(1), e6 (2006).
  • Takeda K , AkiraS. Toll-like receptors. Curr. Protoc. Immunol. Chapter 14, Unit 14.12 (2007).
  • Salazar AM , LevyHB, OndraSet al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic–polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38(6), 1096–1103; discussion 1103–1094 (1996).
  • Nakamura O , ShitaraN, MatsutaniM, TakakuraK, MachidaH. Phase I–II trials of poly(ICLC) in malignant brain tumor patients. J. Interferon Res.2(1), 1–4 (1982).
  • Butowski N , LambornKR, LeeBLet al. A North American brain tumor consortium Phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J. Neurooncol. 91(2), 183–189 (2009).
  • Riesco-Eizaguirre G , SantistebanP. A perspective view of sodium iodide symporter research and its clinical implications. Eur. J. Endocrinol.155(4), 495–512 (2006).
  • Smanik PA , LiuQ, FurmingerTLet al. Cloning of the human sodium lodide symporter. Biochem. Biophys. Res. Commun. 226(2), 339–345 (1996).
  • Spitzweg C , MorrisJC. Approaches to gene therapy with sodium/iodide symporter. Exp. Clin. Endocrinol. Diabetes109(1), 56–59 (2001).
  • Barton KN , StrickerH, Brown Sl et al. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol. Ther.16(10), 1761–1769 (2008).
  • Kircheis R , SchullerS, BrunnerSet al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gene Med. 1(2), 111–120 (1999).
  • Klutz K , RussV, WillhauckMet al. Comparison of two different non-viral gene delivery vectors for systemic sodium iodide symporter gene transfer in HCC. Hum. Gene Ther. 20(11), 1515–1515 (2009).
  • Roth JA (Ed.). Gene-Based Therapies For Cancer. Springer, Heidelberg, Germany (2010).
  • Freytag SO , KhilM, StrickerHet al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62(17), 4968–4976 (2002).
  • Weichselbaum RR , KufeD. Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers. Cancer Gene Ther.16(8), 609–619 (2009).
  • Davis ME . The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm.6(3), 659–668 (2009).
  • Davis ME , ZuckermanJE, ChoiCHet al. Evidence of RNAi in humans from systemically administered sirna via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010).
  • Mayrhofer P , SchleefM, JechlingerW. Use of minicircle plasmids for gene therapy. Methods Mol. Biol.542, 87–104 (2009).
  • Klein-Marcuschamer D , YadavVG, GhaderiA, StephanopoulosGN. De novo metabolic engineering and the promise of synthetic DNA. Adv. Biochem. Eng. Biotechnol. (2010) (Epub ahead of print).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.