440
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the lipid-digestion Processes in the GI Tract Before Designing lipid-based drug-delivery Systems

, , , &
Pages 105-124 | Published online: 19 Dec 2011

References

  • Charman SA , CharmanWN, RoggeMC, WilsonTD, DutkoFJ, PoutonCW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res.9(1), 87–93 (1992).
  • Fernandez S , JanninV, RodierJD, RitterN, MahlerB, CarriereF. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol, medium chain glycerides and PEG esters. Biochim. Biophys. Acta.1771(5), 633–640 (2007).
  • Fernandez S , RodierJD, RitterNet al. Lipolysis of the semi-solid self-emulsifying excipient Gelucire 44/14 by digestive lipases. Biochim. Biophys. Acta. 1781(8), 367–375 (2008).
  • van Tilbeurgh H , Egloff M-P, Martinez C, Rugani N, Verger R, Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by x-Ray crystallography. Nature362(6423), 814–820 (1993).
  • van Tilbeurgh H , SardaL, VergerR, CambillauC. Structure of the pancreatic lipase-procolipase complex. Nature359(6391), 159–162 (1992).
  • Roussel A , CanaanS, EgloffMPet al. Crystal structure of human gastric lipase and model of lysosomal Acid. lipase, two lipolytic enzymes of medical interest. J. Biol. Chem. 274(24), 16995–17002 (1999).
  • Moore SA , KingstonRL, LoomesKMet al. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. J. Mol. Biol. 312(3), 511–523 (2001).
  • Eydoux C , SpinelliS, DavisTLet al. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation. Biochemistry 47(36), 9553–9564 (2008).
  • Verheij HM , WestermanJ, SternbyB, De Haas GH. The complete primary structure of phospholipase A2 from human pancreas. Biochim. Biophys. Acta.747(1–2), 93–99 (1983).
  • Miled N , CanaanS, DupuisLet al. Digestive lipases: from three-dimensional structure to physiology. Biochim. 82(11), 973–986. (2000).
  • Aloulou A , RodriguezJA, FernandezS, Van Oosterhout D, Puccinelli D, Carriere F. Exploring the specific features of interfacial enzymology based on lipase studies. Biochim. Biophys. Acta.1761(9), 995–1013 (2006).
  • Carrière F , BarrowmanJA, VergerR, LaugierR. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology105(3), 876–888 (1993).
  • Lengsfeld H , Beaumier-GallonG, ChahinianHet al. Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors. In: Lipases and Phospholipases in Drug Development. Müller G, Petry S (Eds). Wiley-VCH, Weinheim, Germany, 195–229 (2004).
  • Benzonana G , DesnuelleP. Kinetic study of the action of pancreatic lipase on emulsified triglycerides. Enzymology assay in heterogeneous medium. Biochim. Biophys. Acta.105(1), 121–136 (1965).
  • Hofmann AF . The function of bile salts in fat absorption. The solvent properties of dilute micellar solutions of conjugated bile salts. Biochem. J.89(1), 57–68 (1963).
  • Patton JS , CareyMC. Watching fat digestion. Science204(4389), 145–148. (1979).
  • Hofmann AF , BorgströmB. The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. J. Clin. Invest.43(2), 247–257 (1964).
  • Hernell O , StaggersJE, CareyMC. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry29(8), 2041–2056 (1990).
  • Deems RA , EatonBR, DennisEA. Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implications for the study of lipolytic enzymes. J. Biol. Chem.250(23), 9013–9020 (1975).
  • Borgström B . Phosphatidylcholine as substrate for human pancreatic phospholipase A2. Importance of the physical state of the substrate. Lipids28(5), 371–375 (1993).
  • Nalbone G , LaironD, Charbonnier-AugeireMet al. Pancreatic phospholipase A2 hydrolysis of phosphatidylcholines in various physicochemical states. Biochim. Biophys. Acta. 620(3), 612–625 (1980).
  • Lombardo D , FauvelJ, GuyO. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. I. Action on carboxyl esters, glycerides and phospholipids. Biochim. Biophys. Acta.611(1), 136–146 (1980).
  • Thirstrup K , VergerR, CarrièreF. Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry33(10), 2748–2756 (1994).
  • Eydoux C , De Caro J, Ferrato F et al. Further biochemical characterization of human pancreatic lipase-related protein 2 expressed in yeast cells. J. Lipid Res.48(7), 1539–1549 (2007).
  • Lombardo D , GuyO. Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim. Biophys. Acta.611(1), 147–155 (1980).
  • Reboul E , BertonA, MoussaM, KreuzerC, CrenonI, BorelP. Pancreatic lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein 1, hydrolyze retinyl palmitate in physiological conditions. Biochim. Biophys. Acta.1761(1), 4–10 (2006).
  • Douce R , JoyardJ. Plant galactolipids. In: Lipids: Structure and Function. Stumpf PK (Ed.). Academic Press, New York, NY, USA, 321–362 (1980).
  • Amara S , LafontD, FiorentinoB, BoullangerP, CarriereF, De Caro A. Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate. Biochim. Biophys. Acta.1791(10), 983–990 (2009).
  • Amara S , BarouhN, LecomteJet al. Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2. Biochim. Biophys. Acta. 1801(4), 508–516 (2010).
  • Gargouri Y , PiéroniG, RivièreCet al. Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology 91(4), 919–925 (1986).
  • Pafumi Y , LaironD, Lechene de la Porte P et al. Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J. Biol. Chem.277(31), 28070–28079 (2002).
  • Carrière F , GrandvalP, RenouCet al. Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clin. Gastroenterol. Hepatol. 3(1), 28–38 (2005).
  • Bernbäck S , BläckbergL, HernellO. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim. Biophys. Acta.1001(3), 286–293 (1989).
  • Gargouri Y , PieroniG, RiviereCet al. Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochim. Biophys. Acta. 879(3), 419–423 (1986).
  • Borgström B . Importance of phospholipids, pancreatic phospholipase A2, and fatty acid. for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology78(5 Pt 1), 954–962 (1980).
  • Dahim M , BrockmanH. How colipase-fatty Acid. interactions mediate adsorption of pancreatic lipase to interfaces. Biochemistry37(23), 8369–8377 (1998).
  • Carrière F , GargouriY, MoreauH, RansacS, RogalskaE, VergerR. Gastric lipases: Cellular, biochemical and kinetic aspects. In: Lipases: Their Structure, Biochemistry and Application. Wooley P, Petersen SB (Eds). Cambridge University Press, Cambridge, UK, 181–205 (1994).
  • Moreau H , LaugierR, GargouriY, FerratoF, VergerR. Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology95(5), 1221–1226. (1988).
  • Moreau H , BernadacA, GargouriY, BenkoukaF, LaugierR, VergerR. Immunocytolocalisation of human gastric lipase in chief cells of the fundic mucosa. Histochemistry91(5), 419–423 (1989).
  • Carrière F , RaphelV, Moreau h et al. Dog gastric lipase: stimulation of its secretion in vivo and cytolocalization in mucous pit cells. Gastroenterology102(5), 1535–1545 (1992).
  • Szafran Z , SzafranH, PopielaT, TrompeterG. Coupled secretion of gastric lipase and pepsin in man following pentagastrin stimulation. Digestion18(5–6), 310–318 (1978).
  • Moreau H , SauniereJF, GargouriY, PieroniG, VergerR, SarlesH. Human gastric lipase: variations induced by gastrointestinal hormones and by pathology. Scand. J. Gastroenterol.23(9), 1044–1048. (1988).
  • Moreau J , BouissonM, BalasDet al. Gastric lipase in alcoholic pancreatitis. Comparison of secretive profiles following pentagastrin stimulation in normal adults and patients with pancreatic insufficiency. Gastroenterology 99(1), 175–180. (1990).
  • Ville E , CarriereF, RenouC, LaugierR. Physiological study of pH stability and sensitivity to pepsin of human gastric lipase. Digestion65(2), 73–81 (2002).
  • Carrière F , MoreauH, RaphelVet al. Purification and biochemical characterization of dog gastric lipase. Eur. J. Biochem. 202(1), 75–83 (1991).
  • Chahinian H , SnabeT, AttiasC, FojanP, PetersenSB, CarrièreF. How gastric lipase – an interfacial enzyme with a Ser–His–Asp catalytic triad – acts optimally at acidic pH. Biochemistry45(3), 993–1001 (2006).
  • Aloulou A , CarriereF. Gastric lipase: an extremophilic interfacial enzyme with medical applications. Cell Mol. Life Sci.65(6), 851–854 (2008).
  • Carrière F , RogalskaE, CudreyC, FerratoF, LaugierR, VergerR. In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorg. Med. Chem.5(2), 429–435 (1997).
  • Mitchell DA , RodriguezJA, CarriereF, KriegerN. Determination of the quantitative stereoselectivity fingerprint of lipases during hydrolysis of a prochiral triacylglycerol. J. Biotechnol.135(2), 168–173 (2008).
  • Carrière F , RenouC, RansacSet al. Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. Am. J. Physiol. Gastrointest. Liver. Physiol. 281(1), G16–G28. (2001).
  • Moreau H , GargouriY, LecatD, Junien J-L, Verger R. Screening of preduodenal lipases in several mammals. Biochim. Biophys. Acta.959(3), 247–252 (1988).
  • Gaillard D , LaugeretteF, DarcelN, El-YassimiA, Passilly-DegraceP, HichamiAet al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB. J. 22(5), 1458–1468 (2008).
  • Laugerette F , Passilly-DegraceP, PatrisB, NiotI, FebbraioM, MontmayeurJPet al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115(11), 3177–3184 (2005).
  • Khan NA , BesnardP. Oro-sensory perception of dietary lipids: new insights into the fat taste transduction. Biochim. Biophys. Acta.1791(3), 149–155 (2009).
  • Hamosh M , BurnsWA. Lipolytic activity of human lingual glands (Ebner). Lab. Invest.37(6), 603–608 (1977).
  • Hamosh M . Lingual lipase. In: Lipases. Borgström B, Brockman HL (Eds). Elsevier, Amsterdam, The Netherlands, 49–81 (1984).
  • Hamosh M . Lingual and gastric lipases: their role in fat digestion. In: Lingual and Gastric Lipases. Hamosh M (Eds). CRC Press, Boston, MA, USA, 239 (1990).
  • Tiruppathi C , BalasubramanianKA. Purification and properties of an acid. Lipase from human gastric juice. Biochim. Biophys. Acta.712(3), 692–697 (1982).
  • Moreau H , AbergelC, CarrièreFet al. Isoform purification of gastric lipases. Towards crystallization. J. Mol. Biol. 225(1), 147–153 (1992).
  • Bodmer MW , AngalS, YarrantonGTet al. Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim. Biophys. Acta. 909(3), 237–244 (1987).
  • Docherty AJP , BodmerMW, AngalSet al. Molecular cloning and nucleotide sequence of rat lingual lipase cDNA. Nucleic Acid. Res. 13(6), 1891–1903 (1985).
  • Kouznetsova I , KalinskiT, MeyerF, HoffmannW. Self-renewal of the human gastric epithelium: new insights from expression profiling using laser microdissection. Mol. Biosyst.7(4), 1105–1112 (2011).
  • Carrière F , Withers-MartinezC, van Tilbeurgh H, Roussel A, Cambillau C, Verger R. Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. Biochim. Biophys. Acta.1376(3), 417–432 (1998).
  • Lowe ME , RosenblumJL, StraussAW. Cloning and characterization of human pancreatic lipase cDNA. J. Biol. Chem.264(33), 20042–20048 (1989).
  • Lowe ME . The triglyceride lipases of the pancreas. J. Lipid Res.43(12), 2007–2016. (2002).
  • Verger R . Pancreatic lipases. In: Lipases. Borgström B, Brockman HL (Eds). Elsevier, Amsterdam, The Netherlands, 83–149 (1984).
  • Zieve L , SilvisSE, MulfordB, BlackwoodWD. Secretion of pancreatic enzymes. I. Response to secretin and pancreozymin. Am. J. Dig. Dis.11(9), 671–684. (1966).
  • Zieve L , MulfordB, McHaleA. Secretion of pancreatic enzymes. II. Comparative response following test meal or injection of secretin and pancreozymin. Am. J. Dig. Dis.11(9), 685–694. (1966).
  • Hildebrand P , PetrigC, BurckhardtBet al. Hydrolysis of dietary fat by pancreatic lipase stimulates cholecystokinin release. Gastroenterology 114(1), 123–129 (1998).
  • Ranaldi S , BelleV, WoudstraMet al. Lid opening and unfolding in human pancreatic lipase at low pH revealed by site-directed spin labeling EPR, FTIR spectroscopy. Biochemistry 48(3), 630–638 (2009).
  • Bezzine S , FerratoF, IvanovaMG, LopezV, VergerR, CarriereF. Human pancreatic lipase: colipase dependence and interfacial binding of lid domain mutants. Biochemistry38(17), 5499–5510 (1999).
  • Patton JS , AlbertssonPA, ErlansonC, BorgströmB. Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography. J. Biol. Chem.253(12), 4195–4202 (1978).
  • Momsen WE , BrockmanHL. Effects of colipase and taurodeoxycholate on the catalytic and physical properties of pancreatic lipase B at an oil–water interface. J. Biol. Chem.251(2), 378–383 (1976).
  • Patton JS , DonnerJ, BorgströmB. Lipase-colipase interactions during gel filtration. High and low affinity binding situations. Biochim. Biophys. Acta.529(1), 67–78 (1978).
  • Rathelot J , JulienR, Bosc-BierneI, GargouriY, CanioniP, SardaL. Horse pancreatic lipase. Interaction with colipase from various species. Biochim.63(3), 227–234 (1981).
  • Sternby B , Erlanson-AlbertssonC. Measurement of the binding of human colipase to human lipase and lipase substrates. Biochim. Biophys. Acta.711(1), 193–195 (1982).
  • Rogalska E , RansacS, VergerR. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J. Biol. Chem.265(33), 20271–20276 (1990).
  • de Haas GH , SardaL, RogerJ. Positional specific hydrolysis of phospholipids by pancreatic lipase. Biochim. Biophys. Acta.106(3), 638–640 (1965).
  • Ben A li Y, Carriere F, Verger R, Petry S, Muller G, Abousalham A. Continuous monitoring of cholesterol oleate hydrolysis by hormone-sensitive lipase and other cholesterol esterases. J. Lipid Res.46(5), 994–1000 (2005).
  • Andersson L , CarrièreF, LoweM, NilssonA, VergerR. Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Biochim. Biophys. Acta.1302(3), 236–240 (1996).
  • Carrière F , RenouC, LopezVet al. The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119(4), 949–960. (2000).
  • Giller T , BuchwaldP, Blum-KaelinD, HunzikerW. Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity. J. Biol. Chem.267(23), 16509–16516 (1992).
  • De Caro J , CarrièreF, BarboniP, GillerT, VergerR, de Caro A. Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. Biochim. Biophys. Acta.1387(1–2), 331–341 (1998).
  • Roussel A , de Caro J, Bezzine S et al. Reactivation of the totally inactive pancreatic lipase RP1 by structure- predicted point mutations. Proteins32(4), 523–531. (1998).
  • Lowe ME . Properties and function of pancreatic lipase related protein 2. Biochim.82(11), 997–1004. (2000).
  • Sias B , FerratoF, GrandvalPet al. Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry 43(31), 10138–10148 (2004).
  • Sias B , FerratoF, Pellicer-RubioMTet al. Cloning and seasonal secretion of the pancreatic lipase-related protein 2 present in goat seminal plasma. Biochim. Biophys. Acta. 1686(3), 169–180 (2005).
  • Record M , AmaraS, SubraCet al. Bis (monoacylglycero) phosphate interfacial properties and lipolysis by pancreatic lipase-related protein 2, an enzyme present in THP-1 human monocytes. Biochim. Biophys. Acta. 1811(7–8), 419–430 (2011).
  • Li X , LindquistS, LoweM, NoppaL, HernellO. Bile salt-stimulated lipase and pancreatic lipase-related protein 2 are the dominating lipases in neonatal fat digestion in mice and rats. Pediatr. Res.62(5), 537–541 (2007).
  • Xiao X , RossLE, MillerRA, LoweME. Kinetic properties of mouse pancreatic lipase-related protein-2 suggest the mouse may not model human fat digestion. J. Lipid Res.52(5), 982–990 (2011).
  • Durand S , ClementeF, ThouvenotJP, Fauvel-MarmouyetJ, Douste-BlazyL. A lipase with high phospholipase activity in guinea pig pancreatic juice. Biochim.60(10), 1215–1217 (1978).
  • Fauvel J , BonnefisMJ, ChapH, ThouvenotJP, Douste-BlazyL. Evidence for the lack of classical secretory phospholipase A2 in guinea-pig pancreas. Biochim. Biophys. Acta.666(1), 72–79 (1981).
  • Fauvel J , ChapH, RoquesV, Douste-BlazyL. Substrate specificity of two cationic lipases with high phospholipase A1 activity purified from guinea pig pancreas. II. Studies on glycerophospholipids. Biochim. Biophys. Acta.792(1), 72–78 (1984).
  • De Caro J , EydouxC, CherifSet al. Occurrence of pancreatic lipase-related protein-2 in various species and its relationship with herbivore diet. Comp. Biochem. Phsiol. B Biochem. Mol. Biol. 150(1), 1–9 (2008).
  • Andersson L , BrattC, ArnoldssonKCet al. Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J. Lipid Res. 36(6), 1392–1400 (1995).
  • Hernell O , OlivecronaT. Human milk lipases. II. Bile salt stimulated lipase. Biochim. Biophys. Acta.369(2), 234–244 (1974).
  • Mueller JH . The assimilation of cholesterol and its esters. J. Biol. Chem.22(1), 1–9 (1915).
  • Mueller JH . The mechanism of cholesterol absorption. J. Biol. Chem.27(2), 463–480 (1916).
  • Rudd EA , BrockmanHL. Pancreatic carboxyl ester lipase (cholesterol esterase). In: Lipases. Borgström B, Brockman HL (Eds). Elsevier, Amsterdam, The Netherlands, 185–204 (1984).
  • Van den Bosch H , AarsmanAJ, De Jong JGN, Van Deenen LLM. Studies on lysophospholipases. I. Purification and some properties of a lysophospholipase from beef pancreas. Biochim. Biophys. Acta.296(1), 94–104 (1973).
  • Figarella C . Composition et stabilité de l‘équipement enzymatique du pancréas de l‘homme et de divers animaux. Bulletin Soc. iété de Chimie. Biologique48(1), 97–115 (1966).
  • Guy O , FigarellaC. The proteins of human pancreatic external secretion. Scand. J. Gastroenterol. Suppl67(1), 59–61 (1981).
  • Blackberg L , AngquistKA, HernellO. Bile salt-stimulated lipase in human milk: Evidence for its synthesis in the lactating mammary gland. FEBS. Lett.217(1), 37–41 (1993).
  • Hui DY , KisselJA. Sequence identity between human pancreatic cholesterol esterase and bile salt-stimulated milk lipase. FEBS. Lett.276(1–2), 131–134 (1990).
  • Nilsson J , BläckbergL, CarlssonP, EnerbaeckS, HernellO, BjursellG. cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. Eur. J. Biochem.192(2), 543–550 (1990).
  • Reue K , ZambauxJ, WongHet al. cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J. Lipid Res. 32(2), 267–276 (1991).
  • Hyun J , KothariH, HermE, MortensonJ, TreadwellCR, VahounyGV. Purification and properties of pancreatic juice cholesterol esterase. J. Biol. Chem.244(7), 1937–1945 (1969).
  • Erlanson C . Purification, properties, and substrate specificity of a carboxylesterase in pancreatic juice. Scand. J. Gastroenterol. Suppl10(4), 401–408 (1975).
  • Lynn KR , ChuaquiCA, Clevette-RadfordNA. Kinetic studies of mammalian and microbial cholesterol esterases in homogeneous aqueous solutions. Bioorg. Chem.11(1), 19–23 (1982).
  • Breithaupt DE , BamediA, WirtU. Carotenol fatty Acid. esters: easy substrates for digestive enzymes ? Comp. Biochem. Phsiol. B Biochem. Mol. Biol.132(4), 721–728 (2002).
  • Fernandez S , NajjarA, RobertSet al. Specific assay of carboxyl ester hydrolase using PEG esters as substrate. Analytical Methods 2(8), 1013–1019 (2010).
  • Wang CS , LeeDM. Kinetic properties of human milk bile salt-activated lipase: studies using long chain triacylglycerol as substrate. J. Lipid Res.26(7), 824–830 (1985).
  • Wang CS , KuksisA, ManganaroF, MyherJJ, DownsD, BassHB. Studies on the substrate specificity of purified human milk bile salt-activated lipase. J. Biol. Chem.258(15), 9197–9202 (1983).
  • Howles PN , CarterCP, HuiDY. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J. Biol. Chem.271(12), 7196–7202 (1996).
  • Hernell O , BlackbergL. Human milk bile salt-stimulated lipase: functional and molecular aspects. J. Pediatr.125(5 Suppl. Part 2), S56–S61 (1994).
  • Bernback S , BlackbergL, HernellO. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. J. Clin. Invest.85(4), 1221–1226 (1990).
  • Hernell O , BlackbergL. Digestion of human milk lipids: physiological significance of sn-2-monoglyceride hydrolysis by bile salt-stimulated lipase. Pediat. Res.16(10), 882–885 (1982).
  • Desnuelle P . Pancreatic lipase and phospholipase. In: Molecular and Cellular Basis of Digestion. Desnuelle P et al. (Eds). Elsevier, Amsterdam, The Netherlands, 275–296 (1986).
  • Dennis EA . Diversity of group types, regulation, and function of phospholipase A(2). J. Biol. Chem.269(18), 13057–13060 (1994).
  • Vadas P , PruzanskiW. Role of secretory phospholipase A2 in the pathobiology of disease. Lab. Invest.55(4), 391–404 (1986).
  • Kishino J , KawamotoK, IshizakiJ, VerheijHM, OharaO, AritaH. Pancreatic-type phospholipase A2 activates prostaglandin E2 production in rat mesangial cells by receptor binding reaction. J. Biochem.117(2), 420–424 (1995).
  • Ancian P , LambeauG, MatteiMG, LazdunskiM. The human 180-kDa receptor for secretory phospholipases A(2) – molecular cloning, identification of a secreted soluble form, expression, and localization. J. Biol. Chem.270(15), 8963–8970 (1995).
  • Lambeau G , AncianP, NicolasJ, CupillardL, ZvaritchE, LazdunskiM. A family of receptors for secretory phospholipases A2. C R Seances Soc. Biol. Fil.190(4), 425–435 (1996).
  • Verheij HM , DijkstraBW. Phospholipase A2: mechanism and structure. In: Lipases: Their Structure, Biochemistry and Application. Wooley P, Petersen SB (Eds). Cambridge University Press, Cambridge, UK, 119–138 (1994).
  • de Haas GH , PostemaNM, NieuwenhuisenW, van Deenen LLM. Purification and properties of phospholipase A from porcine pancreas. Biochim. Biophys. Acta.159(1), 103–117 (1968).
  • Winkler FK , d‘ArcyA, HunzikerW. Structure of human pancreatic lipase. Nature343(6260), 771–774 (1990).
  • Rajakannan V , YogavelM, PoiMJet al. Observation of additional calcium ion in the crystal structure of the triple mutant K56,120,121M of bovine pancreatic phospholipase A2. J. Mol. Biol. 324(4), 755–762 (2002).
  • Scott DL , WhiteSP, OtwinowskiZ, YuanW, GelbMH, SiglerPB. Interfacial catalysis: the mechanism of phospholipase A2. Science250(4987), 1541–1546 (1990).
  • Sovago M , WurpelGW, SmitsM, MullerM, BonnM. Calcium-induced phospholipid ordering depends on surface pressure. J. Am. Chem. Soc.129(36), 11079–11084 (2007).
  • Benzonana G , DesnuelleP. Action of some effectors on the hydolysis of long-chain triglycerides by pancreatic Lipase. Biochim. Biophys. Acta.164(1), 47–58 (1968).
  • Benzonana G . On the role of calcium ions during the hydrolysis of insoluble triglycerides by pancreatic lipase. Biochim. Biophys. Acta.151(1), 137–146 (1968).
  • Pieterson WA , VidalJC, VolwerkJJ, deHaas GH. Zymogen-catalysed hydrolysis of monomeric substrates and the presence of a recognition site for lipid–water interfaces in phospholipase A2. Biochemistry13(7), 1455–1460 (1974).
  • Han SK , LeeBI, ChoW. Bacterial expression and characterization of human pancreatic phospholipase A2. Biochim. Biophys. Acta.1346(2), 185–192 (1997).
  • Dua R , WuSK, ChoW. A structure-function study of bovine pancreatic phospholipase A2 using polymerized mixed liposomes. J. Biol. Chem.270(1), 263–268 (1995).
  • Jorgensen K , DavidsenJ, MouritsenOG. Biophysical mechanisms of phospholipase A2 activation and their use in liposome-based drug delivery. FEBS. Lett.531(1), 23–27 (2002).
  • Verger R , FerratoF, MansbachCM, PiéroniG. Novel intestinal phospholipase A2: purification and some molecular characteristics. Biochemistry21(26), 6883–6889 (1982).
  • Mansbach CM , PiéroniG, VergerR. Intestinal phospholipase, a novel enzyme. J. Clin. Invest.69(2), 368–376 (1982).
  • Touqui L , Alaoui-El-AzherM. Mammalian secreted phospholipases A2 and their pathophysiological significance in inflammatory diseases. Curr. Mol. Med.1(6), 739–754 (2001).
  • Senegas-Balas F , BalasD, VergerRet al. Immunohistochemical localization of intestinal phospholipase A2 in rat paneth cells. Histochemistry 81(6), 581–584 (1984).
  • Weinrauch Y , ElsbachP, MadsenLM, ForemanA, WeissJ. The poten anti-Staphylococcus aureus activity of sterile rabbit inflammatory fluid is due to a 14-kDa phospholipase A2. J. Clin. Invest.97(1), 250–257 (1996).
  • Nevalainen TJ , GronroosJM, KallajokiM. Expression of group II phospholipase A2 in the human gastrointestinal tract. Lab. Invest.72(2), 201–208 (1995).
  • Gassama-Diagne A , FauvelJ, ChapH. Purification of a new, calcium-independent, high molecular weight phospholipase A2/lysophospholipase (phospholipase B) from guinea pig intestinal brush-border membrane. J. Biol. Chem.264(16), 9470–9475 (1989).
  • Maury E , PrevostMC, NauzeMet al. Human epidermis is a novel site of phospholipase B expression. Biochem. Biophys. Res. Commun. 295(2), 362–369 (2002).
  • Hauton JC . A quantitative dynamic concept on the role of bile in fat digestion. In: Molecular and Cellular Basis of Digestion. Desnuelle P et al. (Eds). Elsevier, Amsterdam, The Netherlands, 147–170 (1986).
  • Suzuki A , MizumotoA, SarrMG, DimagnoEP. Bacterial lipase and high-fat diets in canine exocrine pancreatic insufficiency: a new therapy of steatorrhea? Gastroenterology112(6), 2048–2055 (1997).
  • Layer P , KellerJ, Lankisch a P. Pancreatic enzyme replacement therapy. Curr. Gastroenterol. Rep.3(2), 101–108 (2001).
  • De la Fournière L , IvanovaMG, Blond J-P, Carrière F, Verger R. Surface behaviour of human pancreatic and gastric lipases. Colloids Surf. B Biointerfaces2(6), 585–593 (1994).
  • Dennis EA . Phospholipases. In: The Enzymes. Boyer P (Ed.). Academic Press, NY, USA, 307–353 (1983).
  • Renou C , CarrièreF, VilleE, GrandvalP, Joubert-CollinM, LaugierR. Effects of Lansoprazole on human gastric lipase secretion and intragastric lipolysis in healthy human volunteers. Digestion63(4), 207–213 (2001).
  • Brouwers J , AnneveldB, GoudappelGJet al. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur. J. Pharm. Biopharm. 77(2), 313–319 (2011).
  • Deat E , Blanquet-DiotS, JarrigeJF, DenisS, BeyssacE, AlricM. Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: application to the assessment of lycopene and alpha-tocopherol bioavailability from a whole food. J. Agric. Food Chem.57(23), 11314–11320 (2009).
  • Blanquet S , ZeijdnerE, BeyssacEet al. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm. Res. 21(4), 585–591 (2004).
  • Fernandez S , ChevrierS, RitterN et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients Labrasol and Gelucire 44/14. Pharm. Res.26(8), 1901–1910 (2009).
  • Sternby B , NilssonA, MelinT, BorgströmB. Pancreatic lipolytic enzymes in human duodenal contents: radioimmunoassay compared with enzyme activity. Scand. J. Gastroenterol.26(8), 859–866 (1991).
  • Wicker-Planquart C , PuigserverA. Regulation of gastrointestinal lipase. Gene expression by dietary lipids. In: Nutrition and Gene Expression. Berdanier and Hargrove (Eds). CRC Press, Boca Raton, FL, USA, 56–89 (1993).
  • Fatouros DG , MullertzA In vitro lipid digestion models in design of drug delivery systems for enhancing oral bioavailability. Expert Opin. Drug Metab. Toxicol.4(1), 65–76 (2008).
  • Gruber V , BernaP, ArnaudTet al. Large-scale production of a therapeutic protein in transgenic tobacco plants: effect of subcellular targeting on quality of a recombinant dog gastric lipase. Molecular Breeding 7(4), 329–340 (2001).
  • Canaan S , DupuisL, RiviereMet al. Purification and interfacial behavior of recombinant human gastric lipase produced from insect cells in a bioreactor. Protein Expr Purif. 14(1), 23–30 (1998).
  • Smerdon GR , AvesSJ, WaltonEF. Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Gene165(2), 313–318 (1995).
  • Crabbe T , WeirAN, WaltonEFet al. The secretion of active recombinant human gastric lipase by Saccharomyces cerevisiae. Protein Expr. Purif. 7(3), 229–236 (1996).
  • Wicker-Planquart C , CanaanS, RiviereM, DupuisL. Site-directed removal of N-glycosylation sites in human gastric lipase. Eur. J. Biochem.262(3), 644–651. (1999).
  • Wicker-Planquart C , CanaanS, RiviereM, DupuisL, VergerR. Expression in insect cells and purification of a catalytically active recombinant human gastric lipase. Protein Eng.9(12), 1225–1232. (1996).
  • Moreau H , GargouriY, LecatD, Junien J-L, Verger R. Purification, characterization and kinetic properties of the rabbit gastric lipase. Biochim. Biophys. Acta.960, 286–293 (1988).
  • Levy E , RouleauT, LepageG, SmithL, JunienJL, RoyCC. Partially purified rabbit gastric lipase: in vitro and in vivo experiments to assess its potential contribution to gastric and intestinal lipolysis. Nutrition Research11(6), 607–619 (1991).
  • Zangenberg NH , MullertzA, KristensenHG, HovgaardL. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci.14(2), 115–122 (2001).
  • Christensen JO , SchultzK, MollgaardB, KristensenHG, MullertzA. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur. J. Pharm. Sci.23(3), 287–296 (2004).
  • Porter CJ , KaukonenAM, Taillardat-BertschingerA, BoydBJ, O‘ConnorJM, EdwardsGAet al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J. Pharm. Sci. 93(5), 1110–1121 (2004).
  • Kaukonen AM , BoydBJ, PorterCJ, CharmanWN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm. Res.21(2), 245–253 (2004).
  • Kaukonen AM , BoydBJ, CharmanWN, PorterCJ. Drug solubilization behavior during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm. Res.21(2), 254–260 (2004).
  • Fatouros DG , DeenGR, ArlethLet al. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle x-ray scattering. Pharm. Res. 24(10), 1844–1853 (2007).
  • Fatouros DG , BergenstahlB, MullertzA. Morphological observations on a lipid-based drug delivery system during in vitro digestion. Eur. J. Pharm. Sci.31(2), 85–94 (2007).
  • Aloulou A , PuccinelliD, SarlesJ, LaugierR, LeblondY, CarriereF. In vitro comparative study of three pancreatic enzyme preparations: dissolution profiles, active enzyme release and Acid. stability. Aliment. Pharmacol. Ther.27(3), 283–292 (2008).
  • Abdelkafi S , FouquetB, BarouhN et al. In vitro comparisons between Carica papaya and pancreatic lipases during test meal lipolysis: potential use of CPL in enzyme replacement therapy. Food Chemistry115(2), 488–494 (2009).
  • Sarkar A , HorneDS, SinghH. Pancreatin-induced coalescence of oil-in-water emulsions in an in vitro duodenal model. Int. Dairy J.20(589–597), (2010).
  • Larsen AT , SasseneP, MüllertzA. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int. J. Pharm.417(1–2), 245–255 (2011).
  • Small DM . A classification of biological lipids based upon their interaction in aqueous systems. J. Amer. Oil Chem. Soc.45(3), 108–119 (1968).
  • Eydoux C , AloulouA, De Caro J et al. Human pancreatic lipase-related protein 2: tissular localization along the digestive tract and quantification in pancreatic juice using a specific ELISA. Biochim. Biophys. Acta.1760(10), 1497–1504 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.