95
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeted Interception of Signaling Reactive Oxygen Species in the Vascular Endothelium

, &
Pages 263-276 | Published online: 02 Feb 2012

References

  • Forman HJ , MaiorinoM, UrsiniF. Signaling functions of reactive oxygen species. Biochemistry49(5), 835–842 (2010).
  • Thomas SR , WittingPK, DrummondGR. Redox control of endothelial function and dysfunction. molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal.10(10), 1713–1765 (2008).
  • Ichimura H , ParthasarathiK, QuadriS, IssekutzAC, BhattacharyaJ. Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. J. Clin. Invest.111(5), 691–699 (2003).
  • Zimmerman MC , DunlayRP, LazartiguesEet al. Requirement for Rac1-dependent NADPH oxidase in the cardiovascular and dipsogenic actions of angiotensin II in the brain. Circ. Res. 95(5), 532–539 (2004).
  • McCord JM , RoyRS, SchafferSW. Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv. Myocardiol.5, 183–189 (1985).
  • Forstermann U . Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol. Chem.387(12), 1521–1533 (2006).
  • Reddy PH . Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular. Med.10(4), 291–315 (2008).
  • Muzykantov VR . Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control Release71(1), 1–21 (2001).
  • Christofidou-Solomidou M , MuzykantovVR. Antioxidant strategies in respiratory medicine. Treat Respir. Med.5(1), 47–78 (2006).
  • Matthay MA , ZimmermanGA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol.33(4), 319–327 (2005).
  • van der Vliet A . NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic. Biol. Med.44(6), 938–955 (2008).
  • Gongora MC , QinZ, LaudeKet al. Role of extracellular superoxide dismutase in hypertension. Hypertension 48(3), 473–481 (2006).
  • Hawkins BJ , MadeshM, KirkpatrickCJ, FisherAB. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol. Biol. Cell18(6), 2002–2012 (2007).
  • Oakley FD , AbbottD, LiQ, EngelhardtJ. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal.11(6), 1313–1333 (2009).
  • Ushio-Fukai M . Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal.11(6), 1289–1299 (2009).
  • Shuvaev VV , HanJ, YuKJet al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25(1), 348–357 (2011).
  • Finkel T . Signal transduction by reactive oxygen species. J. Cell. Biol.194(1), 7–15 (2011).
  • Finkel T . Signal transduction by mitochondrial oxidants. J. Biol. Chem. doi:10.1074/jbc.R111.271999 (2011) (Epub ahead of print).
  • Murphy MP , HolmgrenA, LarssonNGet al. Unraveling the biological roles of reactive oxygen species. Cell. Metab. 13(4), 361–366 (2011).
  • Harrison DG , GongoraMC, GuzikTJ, WidderJ. Oxidative stress and hypertension. J. Am. Soc. Hypertens.1(1), 30–44 (2007).
  • Sedeek M , HebertRL, KennedyCR, BurnsKD, TouyzRM. Molecular mechanisms of hypertension: role of NOX family NADPH oxidases. Curr. Opin Nephrol. Hypertens.18(2), 122–127 (2009).
  • Rajagopalan S , KurzS, MunzelTet al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97(8), 1916–1923 (1996).
  • Touyz RM , BrionesAM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens. Res.34(1), 5–14 (2011).
  • Zalba G , BeaumontFJ, San Jose G, Fortuno A, Fortuno MA, Diez J. Is the balance between nitric oxide and superoxide altered in spontaneously hypertensive rats with endothelial dysfunction? Nephrol. Dial. Transplant.16(Suppl. 1), 2–5 (2001).
  • Jung O , SchreiberJG, GeigerH, PedrazziniT, BusseR, BrandesRP. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation109(14), 1795–1801 (2004).
  • Landmesser U , CaiH, DikalovSet al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40(4), 511–515 (2002).
  • Jackson SP , MistryN, YuanY. Platelets and the injured vessel wall: ‘rolling into action‘: focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends Cardiovasc. Med.10(5), 192–197 (2000).
  • Yao SK , McNattJ, CuiKet al. Combined ADP and thromboxane A2 antagonism prevents cyclic flow variations in stenosed and endothelium-injured arteries in nonhuman primates. Circulation 88(6), 2888–2893 (1993).
  • Peire MA , Puig-ParelladaP. Oxygen-free radicals and nitric oxide are involved in the thrombus growth produced by iontophoresis of ADP. Pharmacol. Res.38(5), 353–356 (1998).
  • Kuwano K , IkedaH, OdaTet al. Xanthine oxidase mediates cyclic flow variations in a canine model of coronary arterial thrombosis. Am. J. Physiol. 270(6 Pt 2), H1993–1999 (1996).
  • Krotz F , SohnHY, GloeTet al. NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood 100(3), 917–924 (2002).
  • Salvemini D , de Nucci G, Sneddon JM, Vane JR. Superoxide anions enhance platelet adhesion and aggregation. Br. J. Pharmacol.97(4), 1145–1150 (1989).
  • Ferroni P , BasiliS, FalcoA, DaviG. Oxidant stress and platelet activation in hypercholesterolemia. Antioxid. Redox Signal.6(4), 747–756 (2004).
  • Redondo PC , SalidoGM, RosadoJA, ParienteJA. Effect of hydrogen peroxide on Ca2+ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochem. Pharmacol.67(3), 491–502 (2004).
  • Gregg D , de Carvalho DD, Kovacic H. Integrins and coagulation: a role for ROS/redox signaling? Antioxid. Redox Signal.6(4), 757–764 (2004).
  • Gkaliagkousi E , FerroA. Nitric oxide signalling in the regulation of cardiovascular and platelet function. Front Biosci.16, 1873–1897 (2011).
  • Coleman LG Jr, Polanowska-Grabowska RK, Marcinkiewicz M, Gear AR. LDL oxidized by hypochlorous acid causes irreversible platelet aggregation when combined with low levels of ADP, thrombin, epinephrine, or macrophage-derived chemokine (CCL22). Blood104(2), 380–389 (2004).
  • Badimon L , StoreyRF, VilahurG. Update on lipids, inflammation and atherothrombosis. Thromb. Haemost.105(Suppl. 1), S34–S42 (2011).
  • Hasunuma Y , MatsuuraE, MakitaZ, KatahiraT, NishiS, KoikeT. Involvement of β 2-glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clin. Exp. Immunol.107(3), 569–573 (1997).
  • Lopez D , Garcia-ValladaresI, Palafox-SanchezCAet al. Oxidized low-density lipoprotein/beta2-glycoprotein I complexes and autoantibodies to oxLig-1/beta-glycoprotein I in patients with systemic lupus erythematosus and antiphospholipid syndrome. Am. J. Clin. Pathol. 121(3), 426–436 (2004).
  • Bouma B , de Groot PG, van den Elsen JM et al. Adhesion mechanism of human β(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J.18(19), 5166–5174 (1999).
  • Matsuura E , KobayashiK, HurleyBL, LopezLR. Atherogenic oxidized low-density lipoprotein/beta2-glycoprotein I (oxLDL/β2GPI) complexes in patients with systemic lupus erythematosus and antiphospholipid syndrome. Lupus15(7), 478–483 (2006).
  • Ishikawa M , StokesKY, ZhangJH, NandaA, GrangerDN. Cerebral microvascular responses to hypercholesterolemia: roles of NADPH oxidase and P-selectin. Circ. Res.94(2), 239–244 (2004).
  • Simon F , StutzinA. Protein kinase C-mediated phosphorylation of p47 phox modulates platelet-derived growth factor-induced H2O2 generation and cell proliferation in human umbilical vein endothelial cells. Endothelium15(4), 175–188 (2008).
  • Sturrock A , CahillB, NormanKet al. Transforming growth factor-beta1 induces NOX4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 290(4), L661–L673 (2006).
  • Abe H , OkajimaK, OkabeH, TakatsukiK, BinderBR. Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro. J. Lab. Clin. Med.123(6), 874–881 (1994).
  • Herkert O , DjordjevicT, BelAibaRS, GorlachA. Insights into the redox control of blood coagulation: role of vascular NADPH oxidase-derived reactive oxygen species in the thrombogenic cycle. Antioxid. Redox Signal.6(4), 765–776 (2004).
  • Sanguigni V , FerroD, PignatelliPet al. CD40 ligand enhances monocyte tissue factor expression and thrombin generation via oxidative stress in patients with hypercholesterolemia. J. Am. Coll. Cardiol. 45(1), 35–42 (2005).
  • Couzin-Frankel J . Inflammation bares a dark side. Science330(6011), 1621 (2010).
  • Lonkar P , DedonPC. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int. J. Cancer128(9), 1999–2009 (2011).
  • Roederer M , StaalFJ, RajuPA, ElaSW, HerzenbergLA. Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-cysteine. Proc. Natl Acad. Sci. USA87(12), 4884–4888 (1990).
  • Rhee SG . Cell signaling. H2O2, a necessary evil for cell signaling. Science312(5782), 1882–1883 (2006).
  • Morgan MJ , LiuZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res.21(1), 103–115 (2011).
  • Reynaert NL , van der Vliet A, Guala AS et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc. Natl Acad. Sci. USA103(35), 13086–13091 (2006).
  • Boueiz A , HassounPM. Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc. Res.77(1), 26–34 (2009).
  • Lucas R , VerinAD, BlackSM, CatravasJD. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem. Pharmacol.77(12), 1763–1772 (2009).
  • Barnard ML , MatalonS. Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature. J. Appl. Physiol.72(5), 1724–1729 (1992).
  • Han J , ShuvaevVV, MuzykantovVR. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. J. Pharmacol. Exp. Ther.338(1), 82–91 (2011).
  • Alom-Ruiz SP , AnilkumarN, ShahAM. Reactive oxygen species and endothelial activation. Antioxid. Redox Signal.10(6), 1089–1100 (2008).
  • Dudek SM , GarciaJG. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol.91(4), 1487–1500 (2001).
  • Lum H , RoebuckKA. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell Physiol.280(4), C719–C741 (2001).
  • Wojciak-Stothard B , TsangLY, PaleologE, HallSM, HaworthSG. Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol.290(6), L1173–L1182 (2006).
  • Alexander JS , AlexanderBC, EppihimerLAet al. Inflammatory mediators induce sequestration of VE-cadherin in cultured human endothelial cells. Inflammation 24(2), 99–113 (2000).
  • Kevil CG , OshimaT, AlexanderB, CoeLL, AlexanderJS. H2O2-mediated permeability: role of MAPK and occludin. Am. J. Physiol. Cell Physiol.279(1), C21–C30 (2000).
  • Haorah J , RamirezSH, SchallK, SmithD, PandyaR, PersidskyY. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J. Neurochem.101(2), 566–576 (2007).
  • McCord JM , EdeasMA. SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed. Pharmacother.59(4), 139–142 (2005).
  • Guzik TJ , HarrisonDG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today11(11–12), 524–533 (2006).
  • Smith RA , MurphyMP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann. NY Acad. Sci.1201, 96–103 (2010).
  • Moens AL , KassDA. Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease. J. Cardiovasc. Pharmacol.50(3), 238–246 (2007).
  • Van Assche T , HuygelenV, CrabtreeMJ. Targeting vascular redox biology through antioxidant gene delivery: a historical view and current perspectives. Recent Pat. Cardiovasc. Drug Discov.6(2), 89–102 (2011).
  • Muro S , GajewskiC, KovalM, MuzykantovVR. ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood105(2), 650–658 (2005).
  • Muro S , MateescuM, GajewskiC, RobinsonM, MuzykantovVR, KovalM. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am. J. Physiol. Lung Cell Mol. Physiol.290(5), L809–L817 (2006).
  • Dziubla TD , KarimA, MuzykantovVR. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J. Control Release102(2), 427–439 (2005).
  • Chorny M , HoodE, LevyRJ, MuzykantovVR. Endothelial delivery of antioxidant enzymes loaded into nonpolymeric magnetic nanoparticles. J. Control Release146(1), 144–151 (2010).
  • Simone EA , DziublaTD, ArguiriEet al. Loading PEG-catalase into filamentous and spherical polymer nanocarriers. Pharm. Res. 26(1), 250–260 (2009).
  • Simone EA , DziublaTD, DischerDE, MuzykantovVR. Filamentous polymer nanocarriers of tunable stiffness that encapsulate the therapeutic enzyme catalase. Biomacromolecules10(6), 1324–1330 (2009).
  • Dziubla TD , ShuvaevVV, HongNKet al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 29(2), 215–227 (2008).
  • Vujaskovic Z , Batinic-HaberleI, RabbaniZNet al. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic. Biol. Med. 33(6), 857–863 (2002).
  • Boissinot M , KuhnLA, LeePet al. Rational design and expression of a heparin-targeted human superoxide dismutase. Biochem. Biophys. Res. Commun. 190(1), 250–256 (1993).
  • Hernandez-Saavedra D , ZhouH, McCordJM. Anti-inflammatory properties of a chimeric recombinant superoxide dismutase: SOD2/3. Biomed. Pharmacother.59(4), 204–208 (2005).
  • Watanabe N , IwamotoT, BowenKD, DickinsonDA, TorresM, FormanHJ. Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways. Biochem. Biophys. Res. Commun.303(1), 287–293 (2003).
  • Nagata K , IwasakiY, YamadaTet al. Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury. Respir. Med. 101(4), 800–807 (2007).
  • Epperly MW , SikoraCA, DeFilippiSJet al. Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol. Blood Marrow Transplant. 8(4), 175–187 (2002).
  • Supinski GS , CallahanLA. Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction. Am. J. Respir. Crit. Care Med.173(11), 1240–1247 (2006).
  • Joralemon MJ , McRaeS, EmrickT. PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem. Commun.46(9), 1377–1393 (2010).
  • Wen J , JiangX, DaiYet al. Adenosine deaminase enzyme therapy prevents and reverses the heightened cavernosal relaxation in priapism. J. Sex. Med. 7(9), 3011–3022 (2009).
  • Payne RW , MurphyBM, ManningMC. Product development issues for PEGylated proteins. Pharm. Dev. Technol.16(5), 423–440 (2011).
  • White CW , JacksonJH, AbuchowskiAet al. Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats. J. Appl. Physiol. 66(2), 584–590 (1989).
  • Yi X , ZimmermanMC, YangR, TongJ, VinogradovS, KabanovAV. Pluronic-modified superoxide dismutase 1 attenuates angiotensin II-induced increase in intracellular superoxide in neurons. Free Radic. Biol. Med.49(4), 548–558 (2010).
  • Lee S , YangSC, HeffernanMJ, TaylorWR, MurthyN. Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjug. Chem.18(1), 4–7 (2007).
  • Reddy MK , LabhasetwarV. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J.23(5), 1384–1395 (2009).
  • Rosenbaugh EG , RoatJW, GaoLet al. The attenuation of central angiotensin II-dependent pressor response and intraneuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase. Biomaterials 31(19), 5218–5226 (2010).
  • Klyachko NL , ManickamDS, BrynskikhAMet al. Cross-linked antioxidant nanozymes for improved delivery to CNS. Nanomedicine doi:10.1016/j.nano.2011.05.010 (2011) (Epub ahead of print).
  • Yamagishi S , NakamuraK, MatsuiT. Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine. Curr. Med. Chem.15(2), 172–177 (2008).
  • Lin SJ , ShyueSK, ShihMCet al. Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors. Atherosclerosis 190(1), 124–134 (2007).
  • Epperly MW , GuoHL, JeffersonMet al. Cell phenotype specific kinetics of expression of intratracheally injected manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) during lung radioprotective gene therapy. Gene Ther. 10(2), 163–171 (2003).
  • Danel C , ErzurumSC, PrayssacPet al. Gene therapy for oxidant injury-related diseases: adenovirus-mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia-reperfusion lung injury. Hum. Gene Ther. 9(10), 1487–1496 (1998).
  • Folz RJ , AbushamaaAM, SulimanHB. Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J. Clin. Invest.103(7), 1055–1066 (1999).
  • Segal BH , HanW, BusheyJJet al. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 5(3), e9631 (2010).
  • Finigan JH . The coagulation system and pulmonary endothelial function in acute lung injury. Microvasc. Res.77(1), 35–38 (2009).
  • Varani J , WardPA. Mechanisms of endothelial cell injury in acute inflammation. Shock2(5), 311–319 (1994).
  • Fruehauf JP , MeyskensFL Jr. Reactive oxygen species: a breath of life or death? Clin. Cancer Res.13(3), 789–794 (2007).
  • Doerschuk CM , QuinlanWM, DoyleNAet al. The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice. J. Immunol. 157(10), 4609–4614 (1996).
  • Esmon CT . The interactions between inflammation and coagulation. Br. J. Haematol.131(4), 417–430 (2005).
  • Yao H , YangSR, KodeAet al. Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling. Biochem. Soc. Trans. 35(Pt 5), 1151–1155 (2007).
  • Oakley FD , AbbottD, LiQ, EngelhardtJF. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal.11(6), 1313–1333 (2009).
  • Kim DW , KimSY, LeeSHet al. Protein transduction of an antioxidant enzyme: subcellular localization of superoxide dismutase fusion protein in cells. BMB Rep. 41(2), 170–175 (2008).
  • Muzykantov VR . Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin. Drug Deliv.2(5), 909–926 (2005).
  • McIntosh DP , TanXY, OhP, SchnitzerJE. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc. Natl Acad. Sci. USA99(4), 1996–2001 (2002).
  • Pasqualini R , McDonaldDM, ArapW. Vascular targeting and antigen presentation. Nat. Immunol.2(7), 567–568 (2001).
  • Schnitzer JE . Vascular targeting as a strategy for cancer therapy. N. Engl. J. Med.339(7), 472–474 (1998).
  • Simone E , DingBS, MuzykantovV. Targeted delivery of therapeutics to endothelium. Cell Tissue Res.335(1), 283–300 (2009).
  • Stan RV , KubitzaM, PaladeGE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA96(23), 13203–13207 (1999).
  • Wilson A , ZhouW, ChampionHCet al. Targeted delivery of oligodeoxynucleotides to mouse lung endothelial cells in vitro and in vivo. Mol. Ther. 12(3), 510–518 (2005).
  • Shuvaev VV , MuzykantovVR. Targeted modulation of reactive oxygen species in the vascular endothelium. J. Control Release153(1), 56–63 (2011).
  • Danilov SM , GavrilyukVD, FrankeFEet al. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am. J. Physiol. Lung Cell Mol. Physiol. 280(6), L1335–L1347 (2001).
  • Oh P , LiY, YuJet al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429(6992), 629–635 (2004).
  • Pasqualini R , KoivunenE, KainRet al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60(3), 722–727 (2000).
  • Harari OA , WickhamTJ, StockerCJet al. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther. 6(5), 801–807 (1999).
  • Lindner JR , SongJ, ChristiansenJ, KlibanovAL, XuF, LeyK. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation104(17), 2107–2112 (2001).
  • Shuvaev VV , TlibaS, PickJet al. Modulation of endothelial targeting by size of antibody–antioxidant enzyme conjugates. J. Control Release 149(3), 236–241 (2011).
  • Muzykantov VR , AtochinaEN, IschiropoulosH, DanilovSM, FisherAB. Immunotargeting of antioxidant enzyme to the pulmonary endothelium. Proc. Natl Acad. Sci. USA93(11), 5213–5218 (1996).
  • Atochina EN , BalyasnikovaIV, DanilovSM, GrangerDN, FisherAB, MuzykantovVR. Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress. Am. J. Physiol.275(4 Pt 1), L806–L817 (1998).
  • Scherpereel A , WiewrodtR, Christofidou-SolomidouMet al. Cell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting. FASEB J. 15(2), 416–426 (2001).
  • Kozower BD , Christofidou-SolomidouM, SweitzerTDet al. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nat. Biotechnol. 21(4), 392–398 (2003).
  • Shuvaev VV , Christofidou-SolomidouM, BhoraFet al. Targeted detoxification of selected reactive oxygen species in the vascular endothelium. J. Pharmacol. Exp. Ther. 331(2), 404–411 (2009).
  • Muzykantov VR , AtochinaEN, KuoAet al. Endothelial cells internalize monoclonal antibody to angiotensin-converting enzyme. Am. J. Physiol. 270(5 Pt 1), L704–L713 (1996).
  • Nowak K , HanuschC, NickschKet al. Pre-ischaemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting-enzyme antibodies. Eur. J. Cardiothorac. Surg. 37(4), 859–863 (2010).
  • Nowak K , WeihS, MetzgerRet al. Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 293(1), L162–L169 (2007).
  • Preissler G , LoeheF, HuffIVet al. Targeted endothelial delivery of nanosized catalase immunoconjugates protects lung grafts donated after cardiac death. Transplantation 92(4), 380–387 (2011).
  • Cai H , GriendlingKK, HarrisonDG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci24(9), 471–478 (2003).
  • Zou MH . Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat.82(1–4), 119–127 (2007).
  • Kuzkaya N , WeissmannN, HarrisonDG, DikalovS. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid and thiols: implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem.278(25), 22546–22554 (2003).
  • Nakazono K , WatanabeN, MatsunoK, SasakiJ, SatoT, InoueM. Does superoxide underlie the pathogenesis of hypertension? Proc. Natl Acad. Sci. USA88(22), 10045–10048 (1991).
  • Schnackenberg CG , WelchWJ, WilcoxCS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension32(1), 59–64 (1998).
  • Laursen JB , RajagopalanS, GalisZ, TarpeyM, FreemanBA, HarrisonDG. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation95(3), 588–593 (1997).
  • Cai H . Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res.68(1), 26–36 (2005).
  • Fang J , SekiT, MaedaH. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv. Drug Deliv. Rev.61(4), 290–302 (2009).
  • McCord JM , WongK, StokesSH, PetroneWF, EnglishD. Superoxide and inflammation: a mechanism for the anti-inflammatory activity of superoxide dismutase. Acta Physiol. Scand. Suppl.492, 25–30 (1980).
  • Valdivia A , PerezY, DominguezAet al. Improved anti-inflammatory and pharmacokinetic properties for superoxide dismutase by chemical glycosidation with carboxymethylchitin. MacroMol. Biosci. 5(2), 118–123 (2005).
  • Veronese FM , CalicetiP, SchiavonO, SergiM. Polyethylene glycol-superoxide dismutase, a conjugate in search of exploitation. Adv. Drug Deliv. Rev.54(4), 587–606 (2002).
  • Matsui T , YamagishiS, NakamuraK, InoueH. Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium channel-blocking properties, inhibits tumour necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation. J. Int. Med. Res.35(6), 886–891 (2007).
  • Mitsopoulos P , OmriA, AlipourM, VermeulenN, SmithMG, SuntresZE. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. Int. J. Pharm.363(1–2), 106–111 (2008).
  • Bonder CS , KnightD, Hernandez-SaavedraD, McCordJM, KubesP. Chimeric SOD2/3 inhibits at the endothelial-neutrophil interface to limit vascular dysfunction in ischemia-reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol.287(3), G676–G684 (2004).
  • Shuvaev VV , TlibaS, NakadaM, AlbeldaSM, MuzykantovVR. Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either. extracellular or intracellular superoxide. J. Pharmacol. Exp. Ther.323(2), 450–457 (2007).
  • Muro S , WiewrodtR, ThomasAet al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116(Pt 8), 1599–1609 (2003).
  • Horgan MJ , LumH, MalikAB. Pulmonary edema after pulmonary artery occlusion and reperfusion. Am. Rev. Respir. Dis.140(5), 1421–1428 (1989).
  • Birukov KG . Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid. Redox Signal.11(7), 1651–1667 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.