150
Views
1
CrossRef citations to date
0
Altmetric
Review

Targeting blood–brain Barrier Changes During Inflammatory Pain: an Opportunity for Optimizing CNS Drug Delivery

&
Pages 1015-1041 | Published online: 31 Aug 2011

Bibliography

  • Hartz AM , BauerB. Regulation of ABC transporters at the blood–brain barrier: new targets for CNS therapy. Mol. Interv.10(5), 293–304 (2010).
  • Hau VS , HuberJD, CamposCR, DavisRT, DavisTP. Effect of lambda-carrageenan-induced inflammatory pain on brain uptake of codeine and antinociception. Brain Res.1018(2), 257–264 (2004).
  • Seelbach MJ , BrooksTA, EgletonRD, DavisTP. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J. Neurochem.102(5), 1677–1690 (2007).
  • McCaffrey G , SeelbachMJ, StaatzWDet al. Occludin oligomeric assembly at tight junctions of the blood–brain barrier is disrupted by peripheral inflammatory hyperalgesia. J. Neurochem. 106(6), 2395–2409 (2008).
  • McCaffrey G , WillisCL, StaatzWDet al. Occludin oligomeric assemblies at tight junctions of the blood–brain barrier are altered by hypoxia and reoxygenation stress. J. Neurochem. 110(1), 58–71 (2009).
  • Ronaldson PT , DeMarcoKM, Sanchez-CovarrubiasL, SolinskyCM, DavisTP. Transforming growth factor-β signaling alters substrate permeability and tight junction protein expression at the blood–brain barrier during inflammatory pain. J. Cereb. Blood Flow Metab.29(6), 1084–1098 (2009).
  • Lochhead JJ , McCaffreyG, QuigleyCEet al. Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J. Cereb.Blood Flow Metab. 30(9), 1625–1636 (2010).
  • Ronaldson PT , FinchJD, DeMarcoKM, QuigleyCE, DavisTP. Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood–brain barrier. J. Pharmacol. Exp. Ther.336(3), 827–839 (2011).
  • Vallejo R , TilleyDM, VogelL, BenyaminR. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract.10(3), 167–184 (2010).
  • Wolka AM , HuberJD, DavisTP. Pain and the blood–brain barrier: obstacles to drug delivery. Adv. Drug Deliv. Rev.55(8), 987–1006 (2003).
  • Dickinson T , MitchellR, RobberechtP, Fleetwood-WalkerSM. The role of VIP/PACAP receptor subtypes in spinal somatosensory processing in rats with an experimental peripheral mononeuropathy. Neuropharmacology38(1), 167–180 (1999).
  • Miller DB , O‘CallaghanJP. Neuroendocrine aspects of the response to stress. Metabolism51(6 Suppl. 1), 5–10 (2002).
  • Loram LC , TaylorFR, StrandKAet al. Prior exposure to glucocorticoids potentiates lipopolysaccharide induced mechanical allodynia and spinal neuroinflammation. Brain Behav. Immun. DOI: 10.1016/j.bbi.2011.04.013 (2011) (Epub ahead of print).
  • Chou R . 2009 Clinical Guidelines from the American Pain Society and the American Academy of Pain Medicine on the use of chronic opioid therapy in chronic noncancer pain: what are the key messages for clinical practice? Pol. Arch. Med. Wewn.119(7–8), 469–477 (2009).
  • Gloth FM , III. Pharmacological management of persistent pain in older persons: focus on opioids and nonopioids. J. Pain12(3 Suppl. 1), S14–S20 (2011).
  • Manchikanti L , FellowsB, AilinaniH, PampatiV. Therapeutic use, abuse, and nonmedical use of opioids: a ten-year perspective. Pain Physician13(5), 401–435 (2010).
  • Vadivelu N , MitraS, HinesRL. Peripheral opioid receptor agonists for analgesia: a comprehensive review. J. Opioid. Manag.7(1), 55–68 (2011).
  • Hamabe W , MaedaT, KiguchiN, YamamotoC, TokuyamaS, KishiokaS. Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J. Pharmacol. Sci.105(4), 353–360 (2007).
  • Labuz D , MousaSA, SchaferM, SteinC, MachelskaH. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res.1160, 30–38 (2007).
  • Haas DA . An update on analgesics for the management of acute postoperative dental pain. J. Can. Dent. Assoc.68(8), 476–482 (2002).
  • Watkins LR , HutchinsonMR, RiceKC, MaierSF. The ‘toll‘ of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol. Sci.30(11), 581–591 (2009).
  • Hutchinson MR , ZhangY, BrownKet al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of Toll-like receptor 4 (TLR4). Eur. J. Neurosci. 28(1), 20–29 (2008).
  • Ehrlich P . Das sauerstufbudurfnis des organismus. In: Eine Farbenanalytische Studie. Hirschwald (1885).
  • Ehrlich P . Ueber die beziehungen von chemischer constitution, verteilung und pharmakologischer wirkung. In: Gesammelte Arbeiten zur Immunitaetsforschung. Hischwald, 574 (1904).
  • Goldmann EE . Vitalfarbung am zentralnervensystem. Abhandl Konigl preuss Akad Wiss1, 1–60 (1913).
  • Lewandowsky M . Zur lehre von der cerebrospinalflussigkeit. Z. Klin. Med.40, 480–494 (1900).
  • Hawkins BT , DavisTP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev.57(2), 173–185 (2005).
  • Tschirgi RD . Blood–brain barrier: fact or fancy? Fed. Proc.21, 665–671 (1962).
  • Maynard EA , SchultzRL, PeaseDC. Electron microscopy of the vascular bed of rat cerebral cortex. Am. J. Anat.100(3), 409–433 (1957).
  • Reese TS , KarnovskyMJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol.34(1), 207–217 (1967).
  • Brightman MW , ReeseTS. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol.40(3), 648–677 (1969).
  • Abbott NJ . Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol. Neurobiol.25(1), 5–23 (2005).
  • Oldendorf WH , CornfordME, BrownWJ. The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol.1(5), 409–417 (1977).
  • Ose A , KusuharaH, YamatsuguKet al. P-glycoprotein restricts the penetration of oseltamivir across the blood–brain barrier. Drug Metab. Dispos. 36(2), 427–434 (2008).
  • Roberts LM , BlackDS, RamanCet al. Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155(2), 423–438 (2008).
  • Yousif S , SaubameaB, CisterninoSet al. Effect of chronic exposure to morphine on the rat blood–brain barrier: focus on the P-glycoprotein. J. Neurochem. 107(3), 647–657 (2008).
  • Kodaira H , KusuharaH, UshikiJ, FuseE, SugiyamaY. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J. Pharmacol. Exp. Ther.333(3), 788–796 (2010).
  • Dallas S , MillerDS, BendayanR. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol. Rev.58(2), 140–161 (2006).
  • Hawkins BT , OcheltreeSM, NorwoodKM, EgletonRD. Decreased blood–brain barrier permeability to fluorescein in streptozotocin-treated rats. Neurosci. Lett.411(1), 1–5 (2007).
  • Bauer B , HartzAM, LuckingJR, YangX, PollackGM, MillerDS. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood–brain barrier. J. Cereb. Blood Flow Metab.28(6), 1222–1234 (2008).
  • Dauchy S , MillerF, CouraudPOet al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem. Pharmacol. 77(5), 897–909 (2009).
  • Lee G , BabakhanianK, RamaswamyM, PratA, WosikK, BendayanR. Expression of the ATP-binding cassette membrane transporter, ABCG2, in human and rodent brain microvessel endothelial and glial cell culture systems. Pharm. Res.24(7), 1262–1274 (2007).
  • Uchida Y , OhtsukiS, KatsukuraYet al. Quantitative targeted absolute proteomincs of human blood–brain barrier transporters and receptors. J. Neurochem. 117(2), 333–345 (2011).
  • Westholm DE , StenehjemDD, RumbleyJN, DrewesLR, AndersonGW. Competitive inhibition of organic anion transporting polypeptide 1c1-mediated thyroxine transport by the fenamate class of nonsteroidal antiinflammatory drugs. Endocrinology150(2), 1025–1032 (2009).
  • Westholm DE , SaloDR, VikenKJ, RumbleyJN, AndersonGW. The blood–brain barrier thyroxine transporter organic anion-transporting polypeptide 1c1 displays atypical transport kinetics. Endocrinology150(11), 5153–5162 (2009).
  • Ose A , KusuharaH, EndoCet al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood–brain barrier. Drug Metab. Dispos. 38(1), 168–176 (2010).
  • Kusch-Poddar M , DreweJ, FuxI, GutmannH. Evaluation of the immortalized human brain capillary endothelial cell line BB19 as a human cell culture model for the blood–brain barrier. Brain Res.1064(1–2), 21–31 (2005).
  • Ose A , ItoM, KusuharaHet al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxyl ate phosphate (Ro 64–0802), a pharmacologically active form of oseltamivir, by active efflux across the blood–brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab. Dispos. 37(2), 315–321 (2009).
  • Miyajima M , KusuharaH, FujishimaM, AdachiY, SugiyamaY. Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood–brain barrier in mice. Drug Metab. Dispos.39(5), 814–819 (2011).
  • Batrakova EV , ZhangY, LiYet al. Effects of pluronic P85 on GLUT1 and MCT1 transporters in the blood–brain barrier. Pharm. Res. 21(11), 1993–2000 (2004).
  • Chishty M , BegleyDJ, AbbottNJ, ReichelA. Interaction of nucleoside analogues with nucleoside transporters in rat brain endothelial cells. J. Drug Target12(5), 265–272 (2004).
  • Dogrukol-Ak D , KumarVB, RyerseJSet al. Isolation of peptide transport system-6 from brain endothelial cells: therapeutic effects with antisense inhibition in Alzheimer and stroke models. J. Cereb. Blood Flow Metab. 29(2), 411–422 (2009).
  • Persidsky Y , RamirezSH, HaorahJ, KanmogneGD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune.Pharmacol.1(3), 223–236 (2006).
  • Zlokovic BV . The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron57(2), 178–201 (2008).
  • Janzer RC , RaffMC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature325(6101), 253–257 (1987).
  • Tao-Cheng JH , NagyZ, BrightmanMW. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci.7(10), 3293–3299 (1987).
  • Neuhaus J , RisauW, WolburgH. Induction of blood–brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann. NY Acad. Sci.633, 578–580 (1991).
  • Hayashi Y , NomuraM, YamagishiS, HaradaS, YamashitaJ, YamamotoH. Induction of various blood–brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia19(1), 13–26 (1997).
  • Willis CL , NolanCC, ReithSNet al. Focal astrocyte loss is followed by microvascular damage, with subsequent repair of the blood–brain barrier in the apparent absence of direct astrocytic contact. Glia 45(4), 325–337 (2004).
  • Ballabh P , BraunA, NedergaardM. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis.16(1), 1–13 (2004).
  • Goldberg M , De Pitta M, Volman V, Berry H, Ben Jacob E. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput. Biol.6(8), pii: e1000909 (2010).
  • Pelligrino DA , VetriF, XuHL. Purinergic mechanisms in gliovascular coupling. Semin. Cell Dev. Biol.22(2), 229–236 (2011).
  • Abbott NJ , RonnbackL, HanssonE. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci.7(1), 41–53 (2006).
  • Mathiisen TM , LehreKP, DanboltNC, OttersenOP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia58(9), 1094–1103 (2010).
  • Ronaldson PT , BendayanM, GingrasD, Piquette-MillerM, BendayanR. Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J. Neurochem.89(3), 788–800 (2004).
  • Bendayan R , RonaldsonPT, GingrasD, BendayanM. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem.54(10), 1159–1167 (2006).
  • Ronaldson PT , BendayanR. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol. Pharmacol.70(3), 1087–1098 (2006).
  • Hirrlinger J , DringenR. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol.400, 395–409 (2005).
  • Minich T , RiemerJ, SchulzJB, WielingaP, WijnholdsJ, DringenR. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J. Neurochem.97(2), 373–384 (2006).
  • Ronaldson PT , BendayanR. HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J. Neurochem.106(3), 1298–1313 (2008).
  • Ronaldson PT , AshrafT, BendayanR. Regulation of multidrug resistance protein 1 by tumor necrosis factor α in cultured glial cells: involvement of nuclear factor-κB and c-Jun N-terminal kinase signaling pathways. Mol. Pharmacol.77(4), 644–659 (2010).
  • Nies AT , JedlitschkyG, KonigJet al. Expression and immunolocalization of the multidrug resistance proteins, MRP1–MRP6 (ABCC1–ABCC6), in human brain. Neuroscience 129(2), 349–360 (2004).
  • Bronger H , KonigJ, KopplowKet al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood–tumor barrier. Cancer Res. 65(24), 11419–11428 (2005).
  • Ronaldson PT , PersidskyY, BendayanR. Regulation of ABC membrane transporters in glial cells: relevance to the pharmacotherapy of brain HIV-1 infection. Glia56(16), 1711–1735 (2008).
  • del Rio-Hortega P . Microglia. In: Cytology and Cellular Pathology of the Nervous System. Penfield W (Ed.). Hoecher, 481–584 (1932)
  • Speth C , DierichMP, SopperS. HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol. Immunol.42(2), 213–228 (2005).
  • Lee G , SchlichterL, BendayanM, BendayanR. Functional expression of P-glycoprotein in rat brain microglia. J. Pharmacol. Exp. Ther.299(1), 204–212 (2001).
  • Ronaldson PT , LeeG, DallasS, BendayanR. Involvement of P-glycoprotein in the transport of saquinavir and indinavir in rat brain microvessel endothelial and microglia cell lines. Pharm. Res.21(5), 811–818 (2004).
  • Dallas S , ZhuX, BaruchelS, SchlichterL, BendayanR. Functional expression of the multidrug resistance protein 1 in microglia. J. Pharmacol. Exp. Ther.307(1), 282–290 (2003).
  • Dallas S , SchlichterL, BendayanR. Multidrug resistance protein (MRP) 4- and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl)adenine by microglia. J. Pharmacol. Exp. Ther.309(3), 1221–1229 (2004).
  • Dore-Duffy P , ClearyK. Morphology and properties of pericytes. Methods Mol. Biol.686, 49–68 (2011).
  • Hori S , OhtsukiS, HosoyaK, NakashimaE, TerasakiT. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J. Neurochem.89(2), 503–513 (2004).
  • Gonul E , DuzB, KahramanS, KayaliH, KubarA, TimurkaynakE. Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc. Res.64(1), 116–119 (2002).
  • Dore-Duffy P , OwenC, BalabanovR, MurphyS, BeaumontT, RafolsJA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res.60(1), 55–69 (2000).
  • Armulik A , GenoveG, MaeMet al. Pericytes regulate the blood–brain barrier. Nature 468(7323), 557–561 (2010).
  • Berezowski V , LandryC, DehouckMP, CecchelliR, FenartL. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res.1018(1), 1–9 (2004).
  • Ben Menachem E , JohanssonBB, SvenssonTH. Increased vulnerability of the blood–brain barrier to acute hypertension following depletion of brain noradrenaline. J. Neural Transm.53(2–3), 159–167 (1982).
  • Cohen Z , MolinattiG, HamelE. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J. Cereb.Blood Flow Metab.17(8), 894–904 (1997).
  • Cohen Z , BonventoG, LacombeP, HamelE. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol.50(4), 335–362 (1996).
  • Vaucher E , HamelE. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci.15(11), 7427–7441 (1995).
  • Tong XK , HamelE. Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer‘s disease. Neuroscience92(1), 163–175 (1999).
  • Vaucher E , TongXK, CholetN, LantinS, HamelE. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J. Comp Neurol.421(2), 161–171 (2000).
  • Buxton RB , FrankLR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab.17(1), 64–72 (1997).
  • Paemeleire K . The cellular basis of neurovascular metabolic coupling. Acta Neurol. Belg.102(4), 153–157 (2002).
  • Vital SA , TeraoS, NagaiM, GrangerDN. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation17(8), 641–649 (2010).
  • Cucullo L , CouraudPO, WekslerBet al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J. Cereb. Blood Flow Metab. 28(2), 312–328 (2008).
  • Sood RR , TaheriS, Candelario-JalilE, EstradaEY, RosenbergGA. Early beneficial effect of matrix metalloproteinase inhibition on blood–brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J. Cereb. Blood Flow Metab.28(2), 431–438 (2008).
  • del Zoppo GJ . The neurovascular unit, matrix proteases, and innate inflammation. Ann. NY Acad. Sci.1207, 46–49 (2010).
  • Hynes RO . Integrins: versatility, modulation, and signaling in cell adhesion. Cell69(1), 11–25 (1992).
  • Tilling T , EngelbertzC, DeckerS, KorteD, HuwelS, GallaHJ. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res.310(1), 19–29 (2002).
  • Tilling T , KorteD, HoheiselD, GallaHJ. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J. Neurochem.71(3), 1151–1157 (1998).
  • Savettieri G , DiL, I, Catania C et al. Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport11(5), 1081–1084 (2000).
  • Butt AM , JonesHC, AbbottNJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J. Physiol.429, 47–62 (1990).
  • Haskins J , GuL, WittchenES, HibbardJ, StevensonBR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol.141(1), 199–208 (1998).
  • Del Maschio A , De Luigi A, Martin-Padura I et al. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med190(9), 1351–1356 (1999).
  • Dejana E , LampugnaniMG, Martinez-EstradaO, BazzoniG. The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int. J. Dev. Biol.44(6), 743–748 (2000).
  • Yeung D , ManiasJL, StewartDJ, NagS. Decreased junctional adhesion molecule-A expression during blood–brain barrier breakdown. Acta Neuropathol.115(6), 635–642 (2008).
  • Hoffman WH , StamatovicSM, AndjelkovicAV. Inflammatory mediators and blood–brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res.1254, 138–148 (2009).
  • Haarmann A , DeissA, ProchaskaJet al. Evaluation of soluble junctional adhesion molecule-A as a biomarker of human brain endothelial barrier breakdown. PLoS One 5(10), e13568 (2010).
  • Furuse M , HiraseT, ItohMet al. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123(6 Pt 2), 1777–1788 (1993).
  • Hawkins BT , AbbruscatoTJ, EgletonRDet al. Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 1027(1–2), 48–58 (2004).
  • Hirase T , StaddonJM, SaitouMet al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 110(Pt 14), 1603–1613 (1997).
  • McCarthy KM , SkareIB, StankewichMCet al. Occludin is a functional component of the tight junction. J. Cell Sci. 109(Pt 9), 2287–2298 (1996).
  • Lacaz-Vieira F , JaegerMM, FarshoriP, KacharB. Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J. Membr. Biol.168(3), 289–297 (1999).
  • Feldman GJ , MullinJM, RyanMP. Occludin: structure, function and regulation. Adv. Drug Deliv. Rev.57(6), 883–917 (2005).
  • Furuse M , ItohM, HiraseTet al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol. 127(6 Pt 1), 1617–1626 (1994).
  • Fanning AS , JamesonBJ, JesaitisLA, AndersonJM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem.273(45), 29745–29753 (1998).
  • Balda MS , WhitneyJA, FloresC, GonzalezS, CereijidoM, MatterK. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical–basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol.134(4), 1031–1049 (1996).
  • McCaffrey G , StaatzWD, QuigleyCAet al. Tight junctions contain oligomeric protein assembly critical for maintaining blood–brain barrier integrity in vivo. J. Neurochem. 103(6), 2540–2555 (2007).
  • Saitou M , FuruseM, SasakiHet al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell 11(12), 4131–4142 (2000).
  • Huber JD , HauVS, BorgL, CamposCR, EgletonRD, DavisTP. Blood–brain barrier tight junctions are altered during a 72-h exposure to λ-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol.283(4), H1531–H1537 (2002).
  • Brown RC , DavisTP. Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells. Biochem. Biophys. Res. Commun.327(4), 1114–1123 (2005).
  • Nag S , VenugopalanR, StewartDJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol.114(5), 459–469 (2007).
  • Campos CR , OcheltreeSM, HomS, EgletonRD, DavisTP. Nociceptive inhibition prevents inflammatory pain induced changes in the blood–brain barrier. Brain Res.1221, 6–13 (2008).
  • Tai LM , HollowayKA, MaleDK, LoughlinAJ, RomeroIA. Amyloid-β-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J. Cell Mol. Med14(5), 1101–1112 (2010).
  • Furuse M , FujitaK, HiiragiT, FujimotoK, TsukitaS. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol.141(7), 1539–1550 (1998).
  • Heiskala M , PetersonPA, YangY. The roles of claudin superfamily proteins in paracellular transport. Traffic2(2), 93–98 (2001).
  • Furuse M , SasakiH, TsukitaS. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol.147(4), 891–903 (1999).
  • Kubota K , FuruseM, SasakiHet al. Ca2+-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr. Biol. 9(18), 1035–1038 (1999).
  • Witt KA , MarkKS, HomS, DavisTP. Effects of hypoxia-reoxygenation on rat blood–brain barrier permeability and tight junctional protein expression. Am. J. Physiol. Heart Circ. Physiol.285(6), H2820–H2831 (2003).
  • Wolburg H , Wolburg-BuchholzK, KrausJet al. Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 105(6), 586–592 (2003).
  • Forster C , BurekM, RomeroIA, WekslerB, CouraudPO, DrenckhahnD. Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier. J. Physiol.586(7), 1937–1949 (2008).
  • Wang P , LiuY, ShangX, XueY. CRM197-induced blood–brain barrier permeability increase is mediated by upregulation of caveolin-1 protein. J. Mol. Neurosci.43(3), 485–492 (2011).
  • Gonzalez-Mariscal L , BnzosA, Avila-FloresA. MAGUK proteins: structure and role in the tight junction. Semin.Cell Dev. Biol.11(4), 315–324 (2000).
  • Stevenson BR , SilicianoJD, MoosekerMS, GoodenoughDA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol.103(3), 755–766 (1986).
  • Abbruscato TJ , LopezSP, MarkKS, HawkinsBT, DavisTP. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J. Pharm. Sci.91(12), 2525–2538 (2002).
  • Fischer S , WobbenM, MartiHH, RenzD, SchaperW. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc. Res.63(1), 70–80 (2002).
  • Mark KS , DavisTP. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol.282(4), H1485–H1494 (2002).
  • Gottardi CJ , ArpinM, FanningAS, LouvardD. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell–cell contacts. Proc. Natl Acad. Sci. USA93(20), 10779–10784 (1996).
  • Riesen FK , Rothen-RutishauserB, Wunderli-AllenspachH. A ZO1-GFP fusion protein to study the dynamics of tight junctions in living cells. Histochem.Cell Biol.117(4), 307–315 (2002).
  • Balda MS , MatterK. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J.19(9), 2024–2033 (2000).
  • Meyer TN , SchwesingerC, DenkerBM. Zonula occludens-1 is a scaffolding protein for signaling molecules. Gα(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithelial cells. J. Biol. Chem.277(28), 24855–24858 (2002).
  • Gumbiner B , LowenkopfT, ApatiraD. Identification of a 160 kDa polypeptide that binds to the tight junction protein ZO-1. Proc. Natl Acad. Sci. USA88(8), 3460–3464 (1991).
  • Bnzos A , HuertaM, Lopez-BayghenE, AzuaraE, AmerenaJ, Gonzalez-MariscalL. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp. Cell Res.292(1), 51–66 (2004).
  • Islas S , VegaJ, PonceL, Gonzalez-MariscalL. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp. Cell Res.274(1), 138–148 (2002).
  • Traweger A , FuchsR, KrizbaiIA, WeigerTM, BauerHC, BauerH. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J. Biol. Chem.278(4), 2692–2700 (2003).
  • Umeda K , MatsuiT, NakayamaMet al. Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J. Biol. Chem. 279(43), 44785–44794 (2004).
  • Takenaga Y , TakagiN, MurotomiK, TanonakaK, TakeoS. Inhibition of Src activity decreases tyrosine phosphorylation of occludin in brain capillaries and attenuates increase in permeability of the blood–brain barrier after transient focal cerebral ischemia. J. Cereb.Blood Flow Metab.29(6), 1099–1108 (2009).
  • Bangsow T , BaumannE, BangsowCet al. The epithelial membrane protein 1 is a novel tight junction protein of the blood–brain barrier. J. Cereb.Blood Flow Metab. 28(6), 1249–1260 (2008).
  • Citi S , SabanayH, Kendrick-JonesJ, GeigerB. Cingulin: characterization and localization. J. Cell Sci.93(Pt 1), 107–122 (1989).
  • Yamamoto T , HaradaN, KawanoY, TayaS, KaibuchiK. In vivo interaction of AF-6 with activated Ras and ZO-1. Biochem. Biophys. Res. Commun.259(1), 103–107 (1999).
  • Zhong Y , EnomotoK, IsomuraHet al. Localization of the 7H6 antigen at tight junctions correlates with the paracellular barrier function of MDCK cells. Exp. Cell Res. 214(2), 614–620 (1994).
  • Li JY , BoadoRJ, PardridgeWM. Blood–brain barrier genomics. J. Cereb. Blood Flow Metab.21(1), 61–68 (2001).
  • Li JY , BoadoRJ, PardridgeWM. Rat blood–brain barrier genomics. II. J. Cereb. Blood Flow Metab.22(11), 1319–1326 (2002).
  • Leslie EM , DeeleyRG, ColeSP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol.204(3), 216–237 (2005).
  • Robey RW , ToKK, PolgarOet al. ABCG2: a perspective. Adv. Drug Deliv. Rev. 61(1), 3–13 (2009).
  • Juliano RL , LingV. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta455(1), 152–162 (1976).
  • Gottesman MM , HrycynaCA, SchoenleinPV, GermannUA, PastanI. Genetic analysis of the multidrug transporter. Annu. Rev. Genet.29, 607–649 (1995).
  • Beaulieu E , DemeuleM, GhitescuL, BeliveauR. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem.J.326(Pt 2), 539–544 (1997).
  • Virgintino D , RobertsonD, ErredeMet al. Expression of P-glycoprotein in human cerebral cortex microvessels. J. Histochem. Cytochem. 50(12), 1671–1676 (2002).
  • Golden PL , PardridgeWM. P-glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res.819(1–2), 143–146 (1999).
  • Schlachetzki F , PardridgeWM. P-glycoprotein and caveolin-1α in endothelium and astrocytes of primate brain. Neuroreport14(16), 2041–2046 (2003).
  • Sharom FJ . Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Biochem. Cell Biol.84(6), 979–992 (2006).
  • Letrent SP , PolliJW, HumphreysJE, PollackGM, BrouwerKR, BrouwerKL. P-glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochem. Pharmacol.58(6), 951–957 (1999).
  • Cisternino S , RousselleC, DagenaisC, ScherrmannJM. Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice. Pharm. Res.18(2), 183–190 (2001).
  • Dagenais C , ZongJ, DucharmeJ, PollackGM. Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm. Res.18(7), 957–963 (2001).
  • Dagenais C , GraffCL, PollackGM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem. Pharmacol.67(2), 269–276 (2004).
  • Stormer E , PerloffMD, von Moltke LL, Greenblatt DJ. Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metab. Dispos.29(7), 954–956 (2001).
  • Wang JS , RuanY, TaylorRM, DonovanJL, MarkowitzJS, DeVaneCL. Brain penetration of methadone (R)- and (S)-enantiomers is greatly increased by P-glycoprotein deficiency in the blood–brain barrier of Abcb1a gene knockout mice. Psychopharmacology (Berl.)173(1–2), 132–138 (2004).
  • Bauer B , YangX, HartzAMet al. In vivo activation of human pregnane X receptor tightens the blood–brain barrier to methadone through P-glycoprotein up-regulation. Mol. Pharmacol.70(4), 1212–1219 (2006).
  • Ortega I , RodriguezM, SuarezE, Perez-RuixoJJ, CalvoR. Modeling methadone pharmacokinetics in rats in presence of P-glycoprotein inhibitor valspodar. Pharm. Res.24(7), 1299–1308 (2007).
  • Tournier N , ChevillardL, MegarbaneB, PirnayS, ScherrmannJM, DeclevesX. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int. J. Neuropsychopharmacol.13(7), 905–915 (2010).
  • Hamabe W , MaedaT, FukazawaYet al. P-glycoprotein ATPase activating effect of opioid analgesics and their P-glycoprotein-dependent antinociception in mice. Pharmacol. Biochem. Behav. 85(3), 629–636 (2006).
  • Kalvass JC , OlsonER, PollackGM. Pharmacokinetics and pharmacodynamics of alfentanil in P-glycoprotein-competent and P-glycoprotein-deficient mice: P-glycoprotein efflux alters alfentanil brain disposition and antinociception. Drug Metab. Dispos.35(3), 455–459 (2007).
  • Dagenais C , DucharmeJ, PollackGM. Uptake and efflux of the peptidic δ-opioid receptor agonist. Neurosci. Lett.301(3), 155–158 (2001).
  • Wandel C , KimR, WoodM, WoodA. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology96(4), 913–920 (2002).
  • Bostrom E , SimonssonUS, Hammarlund-UdenaesM. Oxycodone pharmacokinetics and pharmacodynamics in the rat in the presence of the P-glycoprotein inhibitor PSC833. J. Pharm. Sci.94(5), 1060–1066 (2005).
  • Hassan HE , MyersAL, CoopA, EddingtonND. Differential involvement of P-glycoprotein (ABCB1) in permeability, tissue distribution, and antinociceptive activity of methadone, buprenorphine, and diprenorphine: in vitro and in vivo evaluation. J. Pharm. Sci.98(12), 4928–4940 (2009).
  • Miller DS , NobmannSN, GutmannH, ToeroekM, DreweJ, FrickerG. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol. Pharmacol.58(6), 1357–1367 (2000).
  • Leggas M , AdachiM, SchefferGLet al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell Biol. 24(17), 7612–7621 (2004).
  • Zhang Y , SchuetzJD, ElmquistWF, MillerDW. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J. Pharmacol. Exp. Ther.311(2), 449–455 (2004).
  • Bandler PE , WestlakeCJ, GrantCE, ColeSP, DeeleyRG. Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol. Pharmacol.74(1), 9–19 (2008).
  • van de WK , ZelcerN, KuilAet al. Multidrug resistance proteins 2 and 3 provide alternative routes for hepatic excretion of morphine-glucuronides. Mol. Pharmacol. 72(2), 387–394 (2007).
  • Hasegawa Y , KishimotoS, TakahashiH, InotsumeN, TakeuchiY, FukushimaS. Altered expression of MRP2, MRP3 and UGT2B1 in the liver affects the disposition of morphine and its glucuronide conjugate in a rat model of cholestasis. J. Pharm. Pharmacol.61(9), 1205–1210 (2009).
  • Penson RT , JoelSP, GloyneA, ClarkS, SlevinML. Morphine analgesia in cancer pain: role of the glucuronides. J. Opioid. Manag.1(2), 83–90 (2005).
  • Penson RT , JoelSP, BakhshiK, ClarkSJ, LangfordRM, SlevinML. Randomized placebo-controlled trial of the activity of the morphine glucuronides. Clin. Pharmacol. Ther.68(6), 667–676 (2000).
  • Schuetz JD , ConnellyMC, SunDet al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med 5(9), 1048–1051 (1999).
  • Jedlitschky G , BurchellB, KepplerD. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem.275(39), 30069–30074 (2000).
  • Clemente MI , AlvarezS, SerramiaMJet al. Non-steroidal anti-inflammatory drugs increase the antiretroviral activity of nucleoside reverse transcriptase inhibitors in HIV type-1-infected T-lymphocytes: role of multidrug resistance protein 4. Antivir. Ther. 14(8), 1101–1111 (2009).
  • Cooray HC , BlackmoreCG, MaskellL, BarrandMA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport13(16), 2059–2063 (2002).
  • Hori S , OhtsukiS, TachikawaMet al. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J. Neurochem. 90(3), 526–536 (2004).
  • Lee YJ , KusuharaH, JonkerJW, SchinkelAH, SugiyamaY. Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood–brain barrier: a minor role of breast cancer resistance protein. J. Pharmacol. Exp. Ther.312(1), 44–52 (2005).
  • van Herwaarden AE , JonkerJW, WagenaarEet al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res. 63(19), 6447–6452 (2003).
  • Zhao R , RaubTJ, SawadaGAet al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab. Dispos. 37(6), 1251–1258 (2009).
  • de Vries NA , ZhaoJ, KroonE, BuckleT, BeijnenJH, van Tellingen O. P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin. Cancer Res.13(21), 6440–6449 (2007).
  • Zhou L , SchmidtK, NelsonFR, ZeleskyV, TroutmanMD, FengB. The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec®), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab. Dispos.37(5), 946–955 (2009).
  • Agarwal S , SaneR, OhlfestJR, ElmquistWF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J. Pharmacol. Exp. Ther.336(1), 223–233 (2011).
  • Sugiura T , KatoY, TsujiA. Role of SLC xenobiotic transporters and their regulatory mechanisms PDZ proteins in drug delivery and disposition. J. Control Release116(2), 238–246 (2006).
  • Kusuhara H , SugiyamaY. Active efflux across the blood–brain barrier: role of the solute carrier family. NeuroRx.2(1), 73–85 (2005).
  • Hagenbuch B , MeierPJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch.447(5), 653–665 (2004).
  • Gao B , HagenbuchB, Kullak-UblickGA, BenkeD, AguzziA, MeierPJ. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood–brain barrier. J. Pharmacol. Exp. Ther.294(1), 73–79 (2000).
  • Elkiweri IA , ZhangYL, ChristiansU, NgKY, Tissot van Patot MC, Henthorn TK. Competitive substrates for P-glycoprotein and organic anion protein transporters differentially reduce blood organ transport of fentanyl and loperamide: pharmacokinetics and pharmacodynamics in Sprague-Dawley rats. Anesth. Analg.108(1), 149–159 (2009).
  • Sugiyama D , KusuharaH, TaniguchiHet al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood–brain barrier: high affinity transporter for thyroxine. J. Biol. Chem. 278(44), 43489–43495 (2003).
  • Taogoshi T , NomuraA, MurakamiT, NagaiJ, TakanoM. Transport of prostaglandin E1 across the blood–brain barrier in rats. J. Pharm.Pharmacol.57(1), 61–66 (2005).
  • Chu C , LiJY, BoadoRJ, PardridgeWM. Blood–brain barrier genomics and cloning of a novel organic anion transporter. J. Cereb.Blood Flow Metab.28(2), 291–301 (2008).
  • Huber JD , WittKA, HomS, EgletonRD, MarkKS, DavisTP. Inflammatory pain alters blood–brain barrier permeability and tight junctional protein expression. Am. J. Physiol. Heart Circ. Physiol.280(3), H1241–H1248 (2001).
  • Brooks TA , HawkinsBT, HuberJD, EgletonRD, DavisTP. Chronic inflammatory pain leads to increased blood–brain barrier permeability and tight junction protein alterations. Am. J. Physiol. Heart Circ. Physiol.289(2), H738-H743 (2005).
  • Huber JD , CamposCR, MarkKS, DavisTP. Alterations in blood–brain barrier ICAM-1 expression and brain microglial activation after lambda-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol.290(2), H732-H740 (2006).
  • Bhattacharjee AK , NagashimaT, KondohT, TamakiN. Quantification of early blood–brain barrier disruption by in situ brain perfusion technique. Brain Res.Brain Res. Protoc.8(2), 126–131 (2001).
  • Brooks TA , OcheltreeSM, SeelbachMJet al. Biphasic cytoarchitecture and functional changes in the BBB induced by chronic inflammatory pain. Brain Res. 1120(1), 172–182 (2006).
  • Xie R , Hammarlund-UdenaesM. Blood–brain barrier equilibration of codeine in rats studied with microdialysis. Pharm. Res.15(4), 570–575 (1998).
  • Fischer W , BernhagenJ, NeubertRH, BrandschM. Uptake of codeine into intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells. Eur. J. Pharm. Sci.41(1), 31–42 (2010).
  • Kirchheiner J , SchmidtH, TzvetkovMet al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J. 7(4), 257–265 (2007).
  • Lotsch J , SkarkeC, SchmidtHet al. Evidence for morphine-independent central nervous opioid effects after administration of codeine: contribution of other codeine metabolites. Clin. Pharmacol. Ther. 79(1), 35–48 (2006).
  • King CD , RiosGR, AssoulineJA, TephlyTR. Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch. Biochem. Biophys.365(1), 156–162 (1999).
  • Pepper MS . Transforming growth factor-β: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev.8(1), 21–43 (1997).
  • Derynck R , ZhangYE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature425(6958), 577–584 (2003).
  • Lebrin F , DeckersM, BertolinoP, ten Dijke P. TGF-β receptor function in the endothelium. Cardiovasc. Res.65(3), 599–608 (2005).
  • Wu X , MaJ, HanJD, WangN, ChenYG. Distinct regulation of gene expression in human endothelial cells by TGF-β and its receptors. Microvasc. Res.71(1), 12–19 (2006).
  • Seki T , YunJ, OhSP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ. Res.93(7), 682–689 (2003).
  • Goumans MJ , ValdimarsdottirG, ItohS, RosendahlA, SiderasP, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J.21(7), 1743–1753 (2002).
  • Watabe T , NishiharaA, MishimaKet al. TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J. Cell Biol. 163(6), 1303–1311 (2003).
  • Ishihara H , KubotaH, LindbergRLet al. Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinases and tight junction proteins. J. Neuropathol. Exp. Neurol. 67(5), 435–448 (2008).
  • Inman GJ , NicolasFJ, CallahanJFet al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62(1), 65–74 (2002).
  • Lu P , GonzalesC, ChenYet al. CNS penetration of small molecules following local inflammation, widespread systemic inflammation or direct injury to the nervous system. Life Sci. 85(11–12), 450–456 (2009).
  • Nagaraja TN , KeenanKA, FenstermacherJD, KnightRA. Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation15(1), 1–14 (2008).
  • Strbian D , DurukanA, PitkonenMet al. The blood–brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153(1), 175–181 (2008).
  • Salvemini D , DoyleTM, CuzzocreaS. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem. Soc. Trans.34(Pt 5), 965–970 (2006).
  • Wang ZQ , PorrecaF, CuzzocreaSet al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 309(3), 869–878 (2004).
  • Khattab MM . TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur. J. Pharmacol.548(1–3), 167–173 (2006).
  • van Vliet EA , RedekerS, AronicaE, EdelbroekPM, GorterJA. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia46(10), 1569–1580 (2005).
  • Hayashi K , PuH, TianJet al. HIV-Tat protein induces P-glycoprotein expression in brain microvascular endothelial cells. J. Neurochem. 93(5), 1231–1241 (2005).
  • Hayashi K , PuH, AndrasIEet al. HIV-TAT protein upregulates expression of multidrug resistance protein 1 in the blood–brain barrier. J. Cereb. Blood Flow Metab. 26(8), 1052–1065 (2006).
  • Pekcec A , UnkruerB, SteinVet al. Over-expression of P-glycoprotein in the canine brain following spontaneous status epilepticus. Epilepsy Res. 83(2–3), 144–151 (2009).
  • Hartmann G , CheungAK, Piquette-MillerM. Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J. Pharmacol. Exp. Ther.303(1), 273–281 (2002).
  • Goralski KB , HartmannG, Piquette-MillerM, RentonKW. Downregulation of mdr1a expression in the brain and liver during CNS inflammation alters the in vivo disposition of digoxin. Br. J. Pharmacol.139(1), 35–48 (2003).
  • Hartz AM , BauerB, FrickerG, MillerDS. Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-α and lipopolysaccharide. Mol. Pharmacol.69(2), 462–470 (2006).
  • Salkeni MA , LynchJL, Otamis-PriceT, BanksWA. Lipopolysaccharide impairs blood–brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways. J. Neuroimmune. Pharmacol.4(2), 276–282 (2009).
  • Volk H , PotschkaH, LoscherW. Immunohistochemical localization of P-glycoprotein in rat brain and detection of its increased expression by seizures are sensitive to fixation and staining variables. J. Histochem. Cytochem.53(4), 517–531 (2005).
  • Ossipov MH , KovelowskiCJ, PorrecaF. The increase in morphine antinociceptive potency produced by carrageenan-induced hindpaw inflammation is blocked by naltrindole, a selective δ-opioid antagonist. Neurosci. Lett.184(3), 173–176 (1995).
  • Cui YJ , ChengX, WeaverYM, KlaassenCD. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab. Dispos.37(1), 203–210 (2009).
  • Noe B , HagenbuchB, StiegerB, MeierPJ. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc. Natl Acad. Sci. USA94(19), 10346–10350 (1997).
  • Egleton RD , DavisTP. Transport of the δ-opioid receptor agonist [D-penicillamine2,5] enkephalin across the blood–brain barrier involves transcytosis. J. Pharm. Sci.88(4), 392–397 (1999).
  • Sharom FJ , YuX, LuPet al. Interaction of the P-glycoprotein multidrug transporter (MDR1) with high affinity peptide chemosensitizers in isolated membranes, reconstituted systems, and intact cells. Biochem. Pharmacol. 58(4), 571–586 (1999).
  • Ronaldson PT , TranCS, RasaiahVPA, BendayanR. Increased functional expression of multidrug resistance protein 1 (Mrp1) in cultured glial cells treated with the HIV-1 viral envelope protein gp120 and cytokines. Can. J. Infect. Dis.18, 13B (2007).
  • Dohgu S , YamauchiA, TakataFet al. Transforming growth factor-β1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol. Neurobiol. 24(3), 491–497 (2004).
  • Levy DE , LeeCK. What does STAT3 do? J. Clin. Invest109(9), 1143–1148 (2002).
  • Dreuw A , HermannsHM, HeiseRet al. Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. J. Invest Dermatol. 124(1), 28–37 (2005).
  • Andrejko KM , RajNR, KimPK, CeredaM, DeutschmanCS. IL-6 modulates sepsis-induced decreases in transcription of hepatic organic anion and bile acid transporters. Shock29(4), 490–496 (2008).
  • Kullak-Ublick GA , BeckerMB. Regulation of drug and bile salt transporters in liver and intestine. Drug Metab Rev.35(4), 305–317 (2003).
  • Bauer B , HartzAM, FrickerG, MillerDS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol.Pharmacol.66(3), 413–419 (2004).
  • Urquhart BL , TironaRG, KimRB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J. Clin. Pharmacol.47(5), 566–578 (2007).
  • Lombardo L , PellitteriR, BalazyM, CardileV. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr. Neurovasc. Res.5(2), 82–92 (2008).
  • Narang VS , FragaC, KumarNet al. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am. J. Physiol. Cell Physiol. 295(2), C440-C450 (2008).
  • Zastre JA , ChanGN, RonaldsonPTet al. Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line. J. Neurosci. Res. 87(4), 1023–1036 (2009).
  • Wang X , SykesDB, MillerDS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. Mol. Pharmacol.78(3), 376–383 (2010).
  • Cheng X , MaherJ, DieterMZ, KlaassenCD. Regulation of mouse organic anion-transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab. Dispos.33(9), 1276–1282 (2005).
  • Stedman CA , LiddleC, CoulterSAet al. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc. Natl Acad. Sci. USA 102(6), 2063–2068 (2005).
  • Matheny CJ , AliRY, YangX, PollackGM. Effect of prototypical inducing agents on P-glycoprotein and CYP3A expression in mouse tissues. Drug Metab. Dispos.32(9), 1008–1014 (2004).
  • Stein A , YassouridisA, SzopkoC, HelmkeK, SteinC. Intraarticular morphine versus dexamethasone in chronic arthritis. Pain83(3), 525–532 (1999).
  • Kardash KJ , SarrazinF, TesslerMJ, VellyAM. Single-dose dexamethasone reduces dynamic pain after total hip arthroplasty. Anesth. Analg.106(4), 1253–1257 (2008).
  • Pieretti S , Di Giannuario A, Domenici MR et al. Dexamethasone-induced selective inhibition of the central µ-opioid receptor: functional in vivo and in vitro evidence in rodents. Br. J. Pharmacol.113(4), 1416–1422 (1994).
  • Capasso A , LoizzoA. Functional interference of dexamethasone on some morphine effects: hypothesis for the steroid–opioid interaction. Recent Pat. CNS Drug Discov.3(2), 138–150 (2008).
  • Oak S , ChoiBH. The effects of glutathione glycoside in acetaminophen-induced liver cell necrosis. Exp. Mol. Pathol.65(1), 15–24 (1998).
  • Rius M , Hummel-EisenbeissJ, HofmannAF, KepplerD. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am. J. Physiol. Gastrointest. Liver Physiol.290(4), G640-G649 (2006).
  • Zhang J , HuangW, ChuaSS, WeiP, MooreDD. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science298(5592), 422–424 (2002).
  • Yamamoto T , NairP, MaSWet al. The biological activity and metabolic stability of peptidic bifunctional compounds that are opioid receptor agonists and neurokinin-1 receptor antagonists with a cystine moiety. Bioorg. Med. Chem. 17(20), 7337–7343 (2009).
  • Largent-Milnes TM , YamamotoT, NairPet al. Spinal or systemic TY005, a peptidic opioid agonist/neurokinin 1 antagonist, attenuates pain with reduced tolerance. Br. J. Pharmacol. 161(5), 986–1001 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.