365
Views
0
CrossRef citations to date
0
Altmetric
Review

Subunit Vaccines of the Future: the Need for safe, Customized and Optimized Particulate Delivery Systems

Pages 1057-1077 | Published online: 31 Aug 2011

Bibliography

  • Bloom DE , CanningD, WestonM. The value of vaccination. World Economics6(3), 15–39 (2005).
  • Ehreth J . The value of vaccination: a global perspective. Vaccine21(27–30), 4105–4117 (2003).
  • Rappuoli R , MillerHI, FalkowS. Medicine – the intangible value of vaccination. Science297(5583), 937–940 (2002).
  • Rappuoli R . Bridging the knowledge gaps in vaccine design. Nat. Biotechnol.25(12), 1361–1366 (2007).
  • Mbow ML , De Gregorio E, Valiante NM, Rappuoli R. New adjuvants for human vaccines. Curr. Opin. Immunol.22(3), 411–416 (2010).
  • Reed SG , BertholetS, ColerRN, FriedeM. New horizons in adjuvants for vaccine development. Trends Immunol.30(1), 23–32 (2009).
  • O‘Hagan DT , De Gregorio E. The path to a successful vaccine adjuvant - the long and winding road. Drug Discov. Today14(11–12), 541–551 (2009).
  • O‘Hagan DT , ValianteNM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discovery2(9), 727–735 (2003).
  • Guy B . The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol.5(7), 505–517 (2007).
  • Dagan R , PoolmanJ, SiegristCA. Glycoconjugate vaccines and immune interference: a review. Vaccine28(34), 5513–5523 (2010).
  • Clements CJ , GriffithsE. The global impact of vaccines containing aluminium adjuvants. Vaccine20, S24–S33 (2002).
  • Lindblad EB . Aluminium adjuvants – in retrospect and prospect. Vaccine22(27–28), 3658–3668 (2004).
  • Hem SL , HogeneschH. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev. Vaccines6(5), 685–698 (2007).
  • Clapp T , SiebertP, ChenD, JonesBL. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J. Pharm. Sci.100(2), 388–401 (2011).
  • Marrack P , MckeeAS, MunksMW. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol.9(4), 287–293 (2009).
  • Glenny AT , PopeCG, WaddingtonH, WallaceU. Immunological notes XVLL–XXIV. J. Pathol. Bacteriol.29(1), 31–40 (1926).
  • Morefield GL , SokolovskaA, JiangDP, HogeneschH, RobinsonJP, HemSL. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine23(13), 1588–1595 (2005).
  • Tritto E , MoscaF, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine27(25–26), 3331–3334 (2009).
  • Goto N , KatoH, MaeyamaJet al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine 15(12–13), 1364–1371 (1997).
  • Flach TL , NgG, HariAet al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17(4), 479–487 (2011).
  • Nordly P , MadsenHB, NielsenHM, FogedC. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin. Drug Deliv.6(7), 657–672 (2009).
  • O‘Hagan DT , RappuoliR, DeGE, TsaiT, DelGG. MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev. Vaccines10(4), 447–462 (2011).
  • Schultze V , D‘AgostoV, WackA, NovickiD, ZornJ, HennigR. Safety of MF59 (TM) adjuvant. Vaccine26(26), 3209–3222 (2008).
  • Ott G , BarchfeldGL, ChernoffD, RadhakrishnanR, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm. Biotechnol.6, 277–296 (1995).
  • Banzhoff A , GaspariniR, Laghi-PasiniFet al. MF59 (R)-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults. PloS One 4(2), e4384 (2009).
  • Gasparini R , SchioppaF, LattanziMet al. Impact of prior or concomitant seasonal influenza vaccination on MF59-adjuvanted H1N1v vaccine (Focetria®) in adult and elderly subjects. Int. J. Clin. Pract. 64(4), 432–438 (2010).
  • Galli G , HancockK, HoschlerKet al. Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc. Natl Acad. Sci. USA 106(19), 7962–7967 (2009).
  • Galli G , MediniD, BorgogniEet al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc. Natl Acad. Sci. USA 106(10), 3877–3882 (2009).
  • Garcon N , ChomezP, Van Mechelen M. GlaxoSmithKline Adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines6(5), 723–739 (2007).
  • Roman F , VamanT, GerlachB, MarkendorfA, GillardP, DevasterJM. Immunogenicity and safety in adults of one dose of influenza A H1N1v 2009 vaccine formulated with and without AS03A-adjuvant: preliminary report of an observer-blind, randomised trial. Vaccine28(7), 1740–1745 (2010).
  • Walker WT , FaustSN. Monovalent inactivated split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert Rev. Vaccines9(12), 1385–1398 (2010).
  • Clark TW , PareekM, HoschlerKet al. Trial of 2009 influenza A (H1N1) monovalent MF59-adjuvanted vaccine. N. Engl. J. Med. 361(25), 2424–2435 (2009).
  • Caillet C , DurrieuG, JacquetAet al. Safety surveillance of influenza A(H1N1)v monovalent vaccines during the 2009–2010 mass vaccination campaign in France. Eur. J. Clin. Pharmacol. (2010).
  • Caillet C , PirasF, BernardMCet al. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 28(18), 3076–3079 (2010).
  • Mosca F , TrittoE, MuzziAet al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl Acad. Sci. USA 105(30), 10501–10506 (2008).
  • Fox CB , AndersonRC, DutillTS, GotoY, ReedSG, VedvickTS. Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids Surf. B65(1), 98–105 (2008).
  • Calabro S , TortoliM, BaudnerBCet al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29(9), 1812–1823 (2011).
  • Dupuis M , MurphyTJ, HigginsDet al. Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell Immunol. 186(1), 18–27 (1998).
  • Ellebedy AH , LupferC, GhoneimHE, DeBeauchampJ, KannegantiTD, WebbyRJ. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc. Natl Acad. Sci. USA108(7), 2927–2932 (2011).
  • Fourcade J , KudelaP, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8), 781–791 (2008).
  • Kakimi K , IsobeM, UenakaAet al. A Phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int. J. Cancer DOI: 10.1002/ijc.25955 (2011) (Epub ahead of print).
  • Diefenbach CSM , GnjaticS, SabbatiniPet al. Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin. Cancer Res. 14(9), 2740–2748 (2008).
  • Rodriguez PC , RodriguezG, GonzalezG, LageA. Clinical development and perspectives of CIMAvax EGF, cuban vaccine for non-small-cell lung cancer therapy. MEDICC Rev.12(1), 17–23 (2010).
  • Graham BS , McElrathMJ, KeeferMCet al. Immunization with cocktail of HIV-derived peptides in montanide ISA-51 is immunogenic, but causes sterile abscesses and unacceptable reactogenicity. PloS One 5(8), e11995 (2010).
  • Wu Y , EllisRD, ShafferDet al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PloS One 3(7), e2636 (2008).
  • Schiller JT , CastellsagueX, VillaLL, HildesheimA. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine26(Suppl. 10), K53–K61 (2008).
  • Gluck R , MetcalfeIC. New technology platforms in the development of vaccines for the future. Vaccine20(Suppl. 5), B10–B16 (2002).
  • Christensen D , KorsholmKS, RosenkrandsI, LindenstromT, AndersenP, AggerEM. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines6(5), 785–796 (2007).
  • de Bruijn I , NautaJ, GerezL, PalacheAM. The virosomal influenza vaccine Invivac: immunogenicity and tolerability compared with an adjuvanted influenza vaccine (Fluad®) in elderly subjects. Vaccine24(44–46), 6629–6631 (2006).
  • Bovier PA . Recent advances with a virosomal hepatitis A vaccine. Expert Opin. Biol. Therapy8(8), 1177–1185 (2008).
  • Campo MS , RodenRB. Papillomavirus prophylactic vaccines: established successes, new approaches. J. Virol.84(3), 1214–1220 (2010).
  • Fluckiger AC , LiZM, KatoRMet al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17(7), 1973–1985 (1998).
  • Deml L , SpethC, DierichMP, WolfH, WagnerR. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol. Immunol.42(2), 259–277 (2005).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery4(2), 145–160 (2005).
  • Frazer IH , QuinnM, NicklinJLet al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and Iscomatrix™ adjuvant in women with cervical intraepithelial neoplasia. Vaccine 23(2), 172–181 (2004).
  • Sun HX , XieY, YeYP. ISCOMs® and Iscomatrix™. Vaccine27(33), 4388–4401 (2009).
  • Nakanishi T , HayashiA, KunisawaJet al. Fusogenic liposomes efficiently deliver exogenous antigen through the cytoplasm into the MHC class I processing pathway. Eur. J. Immunol. 30(6), 1740–1747 (2000).
  • De Koker S , LambrechtBN, WillartMAet al. Designing polymeric particles for antigen delivery. Chem. Soc. Rev 40(1), 320–339 (2011).
  • Langer R , ClelandJL, HanesJ. New advances in microsphere-based single-dose vaccines. Adv. Drug Delivery Rev.28(1), 97–119 (1997).
  • Johansen P , GomezJMM, GanderB. Development of synthetic biodegradable microparticulate vaccines: a roller coaster story. Expert Rev. Vaccines6(4), 471–474 (2007).
  • Tamber H , JohansenP, MerkleHP, GanderB. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Delivery Rev.57(3), 357–376 (2005).
  • Putney SD , BurkePA. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol.16(2), 153–157 (1998).
  • Johansen P , EstevezF, ZurbriggenRet al. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine 19(9–10), 1047–1054 (2000).
  • Feng L , QiMR, ZhouXJet al. Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J. Control. Release 112(1), 35–42 (2006).
  • Fischer S , SchlosserE, MuellerMet al. Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J. Drug Targeting 17(8), 652–661 (2009).
  • Kasturi SP , SkountzouI, AlbrechtRAet al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335), 543–547 (2011).
  • Arca HC , GunbeyazM, SenelS. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev. Vaccines8(7), 937–953 (2009).
  • Amidi M , MastrobattistaE, JiskootW, HenninkWE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Delivery Rev.62(1), 59–82 (2010).
  • El-Kamary SS , PasettiMF, MendelmanPMet al. Adjuvanted intranasal norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J. Infect. Dis. 202(11), 1649–1658 (2010).
  • Baudner BC , VerhoefJC, GiulianiMMet al. Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. J. Drug Targeting 13(8–9), 489–498 (2005).
  • Hagenaars N , VerheulRJ, MoorenIet al. Relationship between structure and adjuvanticity of N,N,N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. J. Control. Release 140(2), 126–133 (2009).
  • Hagenaars N , ManiaM, de Jong P et al. Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. J. Control. Release144(1), 17–24 (2010).
  • Porporatto C , BiancoID, CorreaSG. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J. Leukocyte Biol.78(1), 62–69 (2005).
  • Nagamoto T , HattoriY, TakayamaK, MaitaniY. Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res.21(4), 671–674 (2004).
  • Slutter B , BalSM, QueIet al. Antigen-adjuvant nanoconjugates for nasal vaccination: an improvement over the use of nanoparticles? Mol. Pharmaceutics 7(6), 2207–2215 (2010).
  • De Koker S , De Geest BG, Singh SK et al. Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew. Chem., Int. Ed.48(45), 8485–8489 (2009).
  • De Haes W , De Koker S, Pollard C et al. Polyelectrolyte capsules-containing HIV-1 p24 and poly I:C modulate dendritic cells to stimulate HIV-1-specific immune responses. Mol. Ther.18(7), 1408–1416 (2010).
  • Iwasaki A , MedzhitovR. Regulation of adaptive immunity by the innate immune system. Science327(5963), 291–295 (2010).
  • Coffman RL , SherA, SederRA. Vaccine adjuvants: putting innate immunity to work. Immunity33(4), 492–503 (2010).
  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54Pt 1, 1–13 (1989).
  • Vivier E , MalissenB. Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Rev. Immunol.6(1), 17–21 (2005).
  • Medzhitov R , JanewayCA Jr. Decoding the patterns of self and nonself by the innate immune system. Science296(5566), 298–300 (2002).
  • Duthie MS , WindishHP, FoxCB, ReedSG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev.239(1), 178–196 (2011).
  • Medzhitov R , Preston-HurlburtP, JanewayCA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388(6640), 394–397 (1997).
  • Akira S , TakedaK. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • Kawai T , AkiraS. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol.11(5), 373–384 (2010).
  • Takeda K , AkiraS. Toll-like receptors in innate immunity. Int. Immunol.17(1), 1–14 (2005).
  • Medzhitov R . Toll-like receptors and innate immunity. Nat. Rev. Immunol.1(2), 135–145 (2001).
  • Gay NJ , GangloffM. Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem.76, 141–165 (2007).
  • Philpott DJ , GirardinSE. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol.41(11), 1099–1108 (2004).
  • Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20, 709–760 (2002).
  • Agrawal S , AgrawalA, DoughtyBet al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 171(10), 4984–4989 (2003).
  • Zaks K , JordanM, GuthAet al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol. 176(12), 7335–7345 (2006).
  • Durand V , WongSY, ToughDF, LeBA. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-α/β. Immunol. Cell Biol.82(6), 596–602 (2004).
  • Le Bon A , ToughDF. Type I interferon as a stimulus for cross-priming. Cytokine Growth Factor Rev.19(1), 33–40 (2008).
  • Harty JT , BevanMJ. Responses of CD8+ T cells to intracellular bacteria. Curr. Opin. Immunol.11(1), 89–93 (1999).
  • Casella CR , MitchellTC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci.65(20), 3231–3240 (2008).
  • Garcon N . Preclinical development of AS04. Methods Mol. Biol.626, 15–27 (2010).
  • Schwarz T . Clinical update of the AS04-Adjuvanted human Papillomavirus-16/18 cervical cancer vaccine, cervarix. Adv. Ther.26(11), 983–998 (2009).
  • The GlaxoSmithKline Vaccine HPV-007 Study Group: Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6+4 years. The Lancet374(9706), 1975–1985 (2009).
  • Giannini SL , HanonE, MorisPet al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared with aluminium salt only. Vaccine 24(33–34), 5937–5949 (2006).
  • Didierlaurent AM , MorelS, LockmanLet al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183(10), 6186–6197 (2009).
  • Pichyangkul S , GettayacaminM, MillerRSet al. Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 22(29–30), 3831–3840 (2004).
  • Brando C , WareLA, FreybergerHet al. Murine immune responses to liver-stage antigen 1 protein FMP011, a malaria vaccine candidate, delivered with adjuvant AS01B or AS02A. Infect. Immun. 75(2), 838–845 (2007).
  • Agger EM , RosenkrandsI, HansenJet al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PloS One 3(9), e3116 (2008).
  • Richards RL , RaoM, WassefNM, GlennGM, RothwellSW, AlvingCR. Liposomes containing lipid A serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect. Immun.66(6), 2859–2865 (1998).
  • Nordly P , AggerEM, AndersenP, NielsenHM, FogedC. Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm. Res.28(3), 553–562 (2011).
  • Alexopoulou L , HoltAC, MedzhitovR, FlavellRA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413(6857), 732–738 (2001).
  • Schulz O , DieboldSS, ChenMet al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028), 887–892 (2005).
  • Longhi MP , TrumpfhellerC, IdoyagaJet al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206(7), 1589–1602 (2009).
  • Richmond JY , HamiltonLD. Foot-and-mouth disease virus inhibition induced in mice by synthetic double-stranded RNA (polyriboinosinic and polyribocytidylic acids). Proc. Natl Acad. Sci. USA64(1), 81–86 (1969).
  • Field AK , TytellAA, LampsonGP, NemesMM, HillemanMR. Double-stranded polynucleotides as interferon inducers. J. Gen. Physiol.56(1), 90–96 (1970).
  • Verdijk RM , MutisT, EsendamBet al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J. Immunol. 163(1), 57–61 (1999).
  • Sloat BR , CuiZ. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic-polyribocytidylic acid induced strong mucosal and systemic immunities. Pharm. Res.23(6), 1217–1226 (2006).
  • Trumpfheller C , CaskeyM, NchindaGet al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc. Natl Acad. Sci. USA 105(7), 2574–2579 (2008).
  • Fujimoto C , NakagawaY, OharaK, TakahashiH. Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int. Immunol.16(1), 55–63 (2004).
  • Salem ML , KadimaAN, ColeDJ, GillandersWE. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J. Immunother.28(3), 220–228 (2005).
  • Freeman AI , Al-BussamN, O‘MalleyJA, StutzmanL, BjornssonS, CarterWA. Pharmacologic effects of polyinosinic-polycytidylic acid in man. J. Med. Virol.1(2), 79–93 (1977).
  • Cornell J r. CJ, Smith KA, Cornwell III GG, Burke GP, McIntyre OR. Systemic effects of intravenous polyriboinosinic-polyribocytidylic acid in man. J. Natl Cancer Inst.57(6), 1211–1216 (1976).
  • Nordly P , RoseF, ChristensenDet al. Immunity by formulation design: Induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J. Control. Release 150(3), 307–317 (2011).
  • Fujimura T , NakagawaS, OhtaniT, ItoY, AibaS. Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Eur. J. Immunol.36(12), 3371–3380 (2006).
  • Valmori D , SouleimanianNE, ToselloVet al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc. Natl Acad. Sci. USA 104(21), 8947–8952 (2007).
  • Karbach J , GnjaticS, BenderAet al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA-51: association with survival. Int. J. Cancer 126(4), 909–918 (2010).
  • Kuball J , de Boer K, Wagner E et al. Pitfalls of vaccinations with WT1-, Proteinase3-and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol. Immunother.60(2), 161–171 (2011).
  • Sansonetti PJ . The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol.7(12), 1237–1242 (2006).
  • Kumar H , KawaiT, AkiraS. Pathogen recognition in the innate immune response. Biochem. J.420, 1–16 (2009).
  • Gitlin L , BarchetW, GilfillanSet al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103(22), 8459–8464 (2006).
  • Kato H , TakeuchiO, SatoSet al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089), 101–105 (2006).
  • Kato H , TakeuchiO, Mikamo-SatohEet al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205(7), 1601–1610 (2008).
  • Eisenbarth SC , ColegioOR, O‘ConnorW, SutterwalaFS, FlavellRA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453(7198), 1122–1126 (2008).
  • Kool M , PetrilliV, DeSTet al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181(6), 3755–3759 (2008).
  • Franchi L , NunezG. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1 β secretion but dispensable for adjuvant activity. Eur. J. Immunol.38(8), 2085–2089 (2008).
  • Werninghaus K , BabiakA, GrossOet al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcR gamma-Syk-Card9-dependent innate immune activation. J. Exp. Med. 206(1), 89–97 (2009).
  • Schoenen H , BodendorferB, HitchensKet al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol. 184(6), 2756–2760 (2010).
  • Matzinger P . Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994).
  • Kono H , RockKL. How dying cells alert the immune system to danger. Nat. Rev. Immunol.8(4), 279–289 (2008).
  • Medzhitov R . Origin and physiological roles of inflammation. Nature454(7203), 428–435 (2008).
  • Gallucci S , LolkemaM, MatzingerP. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5(11), 1249–1255 (1999).
  • Matzinger P . Friendly and dangerous signals: is the tissue in control? Nat. Immunol.8(1), 11–13 (2007).
  • Sporri R , SousaCRE. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol.6(2), 163–170 (2005).
  • Johansen P , MohananD, Martinez-GomezJM, KundigTM, GanderB. Lympho-geographical concepts in vaccine delivery. J. Control. Release148(1), 56–62 (2010).
  • Mohanan D , SlutterB, Henriksen-LaceyMet al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J. Control. Release 147(3), 342–349 (2010).
  • Giudice EL , CampbellJD. Needle-free vaccine delivery. Adv. Drug Delivery Rev.58(1), 68–89 (2006).
  • Holmgren J , CzerkinskyC. Mucosal immunity and vaccines. Nat. Med.11(4), S45–S53 (2005).
  • Cerutti A , ChenK, ChornyA. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol.29, 273–293 (2011).
  • Mestecky J . The common mucosal immune system and current strategies for induction of immune responses in external secretions. J. Clin. Immunol.7(4), 265–276 (1987).
  • Gill N , WlodarskaM, FinlayBB. The future of mucosal immunology: studying an integrated system-wide organ. Nat. Immunol.11(7), 558–560 (2010).
  • Gallichan WS , WoolstencroftRN, GuarasciT, McCluskieMJ, DavisHL, RosenthalKL. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J. Immunol.166(5), 3451–3457 (2001).
  • Chen K , CeruttiA. Vaccination strategies to promote mucosal antibody responses. Immunity33(4), 479–491 (2010).
  • Freytag LC , ClementsJD. Mucosal adjuvants. Vaccine23(15), 1804–1813 (2005).
  • Chadwick S , KriegelC, AmijiM. Nanotechnology solutions for mucosal immunization. Adv. Drug Delivery Rev.62(4–5), 394–407 (2010).
  • Slutter B , HagenaarsN, JiskootW. Rational design of nasal vaccines. J. Drug Targeting16(1), 1–17 (2008).
  • Jabbal-Gill I . Nasal vaccine innovation. J. Drug Targeting18(10), 771–786 (2010).
  • Baudner BC , O‘HaganDT. Bioadhesive delivery systems for mucosal vaccine delivery. J. Drug Targeting18(10), 752–770 (2010).
  • Lu D , HickeyAJ. Pulmonary vaccine delivery. Expert Rev. Vaccines6(2), 213–226 (2007).
  • Blank F , StumblesP, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expert Opin. Drug Deliv.8(5), 547–563 (2011).
  • Omer SB , HiremathGS, HalseyNA. Respiratory administration of measles vaccine. Lancet375(9716), 706–708 (2010).
  • Patton JS , ByronPR. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discovery6(1), 67–74 (2007).
  • Ingvarsson PT , YangM, NielsenHM, RantanenJ, FogedC. Stabilization of liposomes during drying. Expert Opin. Drug Deliv.8(3), 375–388 (2011).
  • Sou T , MeeusenEN, deVM, MortonDA, KaminskasLM, McIntoshMP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol.29(4), 191–198 (2011).
  • Azizi A , KumarA, az-MitomaF, MesteckyJ. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog.6(11), e1001147 (2010).
  • Mann JFS , AcevedoR, del Campo J, Perez O, Ferro VA. Delivery systems: a vaccine strategy for overcoming mucosal tolerance? Expert Rev. Vaccines8(1), 103–112 (2008).
  • Devriendt B , De Geest BG, Cox E. Designing oral vaccines targeting intestinal dendritic cells. Expert Opin. Drug Deliv.8(4), 467–483 (2011).
  • Bal SM , DingZ, vanRE, JiskootW, BouwstraJA. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J. Control. Release148(3), 266–282 (2010).
  • Bal SM , KruithofAC, ZwierRet al. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J. Control. Release 147(2), 218–224 (2010).
  • Bal SM , DingZ, KerstenGF, JiskootW, BouwstraJA. Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm. Res.27(9), 1837–1847 (2010).
  • Bal SM , SlutterB, JiskootW, BouwstraJA. Small is beautiful: N-trimethyl chitosan-ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine29(23), 4025–4032 (2011).
  • Bal SM , SlutterB, van Riet E et al. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J. Control. Release142(3), 374–383 (2010).
  • Morefield GL . A rational, systematic approach for the development of vaccine formulations. AAPS J.13(2), 191–200 (2011).
  • Xiang SD , ScholzenA, MinigoGet al. Pathogen recognition and development of particulate vaccines: Does size matter? Methods 40(1), 1–9 (2006).
  • Foged C , BrodinB, FrokjaerS, SundbladA. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm.298(2), 315–322 (2005).
  • Kersten GF , CrommelinDJ. Liposomes and ISCOMs. Vaccine21(9–10), 915–920 (2003).
  • Oyewumi MO , KumarA, CuiZ. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines9(9), 1095–1107 (2010).
  • Bachmann MF , JenningsGT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol.10(11), 787–796 (2010).
  • Kovacsovics-Bankowski M , ClarkK, BenacerrafB, RockKL. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl Acad. Sci. USA90(11), 4942–4946 (1993).
  • Reis e Sousa C , StahlPD, AustynJM. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med.178(2), 509–519 (1993).
  • Watts C . Antigen processing in the endocytic compartment. Curr. Opin. Immunol.13(1), 26–31 (2001).
  • Yewdell JW . Designing CD8+ T cell vaccines: it‘s not rocket science (yet). Curr. Opin. Immunol.22(3), 402–410 (2010).
  • Reise Sousa C , GermainRN. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med.182(3), 841–851 (1995).
  • Kovacsovics-Bankowski M , RockKL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science267(5195), 243–246 (1995).
  • Oussoren C , StormG. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Delivery Rev.50(1–2), 143–156 (2001).
  • Swartz MA . The physiology of the lymphatic system. Adv. Drug Delivery Rev.50(1–2), 3–20 (2001).
  • Manolova V , FlaceA, BauerM, SchwarzK, SaudanP, BachmannMF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38(5), 1404–1413 (2008).
  • Vos Q , LeesA, WuZQ, SnapperCM, MondJJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev.176, 154–170 (2000).
  • Rosenberg AS . Effects of protein aggregates: an immunologic perspective. AAPS J.8(3), E501–E507 (2006).
  • Steinman RM , BonifazL, FujiiSet al. The innate functions of dendritic cells in peripheral lymphoid tissues. Adv. Exp. Med. Biol. 560, 83–97 (2005).
  • den Haan JM , LeharSM, BevanMJ. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med.192(12), 1685–1696 (2000).
  • Cella M , JarrossayD, FacchettiFet al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5(8), 919–923 (1999).
  • Villadangos JA , SchnorrerP. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol.7(7), 543–555 (2007).
  • Fifis T , GamvrellisA, Crimeen-IrwinBet al. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173(5), 3148–3154 (2004).
  • Korsholm KS , AggerEM, FogedCet al. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 121(2), 216–226 (2007).
  • Foged C , ArigitaC, SundbladA, JiskootW, StormG, FrokjaerS. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine22(15–16), 1903–1913 (2004).
  • Thiele L , Rothen-RutishauserB, JilekS, Wunderli-AllenspachH, MerkleHP, WalterE. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release76(1–2), 59–71 (2001).
  • Walter E , DreherD, KokMet al. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J. Control. Release 76(1–2), 149–168 (2001).
  • Kidane A , GuimondP, Rob Ju Tc et al. Effects of cellulose derivatives and poly(ethylene oxide)-poly(propylene oxide) tri-block copolymers (Pluronic surfactants) on the properties of alginate based microspheres and their interactions with phagocytic cells. J. Control. Release85(1–3), 181–189 (2002).
  • Thomas CM , RawatA, Hope-WeeksLJ, AhsanF. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm. (2010).
  • Singh J , PanditS, BramwellVW, AlparHO. Diphtheria toxoid loaded poly-([ε]-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods38(2), 96–105 (2006).
  • Seong SY , MatzingerP. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol.4(6), 469–478 (2004).
  • Champion JA , MitragotriS. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA103(13), 4930–4934 (2006).
  • World Health Organization. Manual for production and control of vaccines – tetanous toxoid. Geneva: World Health Organization (1977)
  • Hansen B , SokolovskaA, HogeneschH, HemSL. Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine25(36), 6618–6624 (2007).
  • Romero MI , ShiY, HogeneschH, HemSL. Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine25(5), 825–833 (2007).
  • Jorgensen L , WoodGK, RosenkrandsI, PetersenC, ChristensenD. Protein adsorption and displacement at lipid layers determined by total internal reflection fluorescence (TIRF). J. Liposome Res.19(2), 99–104 (2009).
  • Jones LS , PeekLJ, PowerJ, MarkhamA, YazzieB, MiddaughCR. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J. Biol. Chem.280(14), 13406–13414 (2005).
  • Jemmerson R , MargoliashE. Topographic antigenic determinants on cytochrome c. Immunoadsorbent separation of the rabbit antibody populations directed against horse cytochrome c. J. Biol. Chem.254(24), 12706–12716 (1979).
  • Thai R , MoineG, DesmadrilMet al. Antigen stability controls antigen presentation. J. Biol. Chem. 279(48), 50257–50266 (2004).
  • Podda A . The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine19(17–19), 2673–2680 (2001).
  • Pearse MJ , DraneD. Iscomatrix adjuvant for antigen delivery. Adv. Drug Delivery Rev.57(3), 465–474 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.