268
Views
0
CrossRef citations to date
0
Altmetric
Review

Self-assembling Peptides and Their Potential Applications in Biomedicine

, , , &
Pages 1043-1056 | Published online: 31 Aug 2011

Bibliography

  • Yan XH , ZhuPL, LiJB. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev.39(6), 1877–1890 (2010).
  • Fung SY , YangH, BholaPTet al. Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine: complexation, release and in vitro delivery. Adv. Func. Mat. 19(1), 74–83 (2009).
  • Gazit E . Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev.36(8), 1263–1269 (2007).
  • Hartgerink JD , BeniashE. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science294(5547), 1684–1688 (2001).
  • Zhang SG , MariniDM, HwangW, SantosoS. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr. Opin. Chem. Biol.6(6), 865–871 (2002).
  • Mijatovic D , EijkelJCT, van den Berg A. Technologies for nanofluidic systems: top-down vs. bottom-up – a review. Lab Chip5(5), 492–500 (2005).
  • Glazner KAC , OderoGL, AnemaEet al. Strain specific differences in memory and neuropathology in a mouse model of Alzheimer‘s disease. Life Sciences 86(25–26), 942–950 (2010).
  • Gazit E . Mechanisms of amyloid fibril self-assembly and inhibition. Febs J.272(23), 5971–5978 (2005).
  • Elgersma RC , MeijnekeT, PosthumaG, RijkersDTS, LiskampRMJ. Self-assembly of amylin(20–29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils. Chem. Eur. J.12(14), 3714–3725 (2006).
  • Carny O , GazitE. A model for the role of short self-assembled peptides in the very early stages of the origin of life. Faseb J.19(9), 1051–1055 (2005).
  • Hamley IW . Peptide fibrillization. Angew. Chem. Int. Edit.46(43), 8128–8147 (2007).
  • Cohen T , Frydman-MaromA, RechterM, GazitE. Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry45(15), 4727–4735 (2006).
  • Goedert M , SpillantiniMG. A century of Alzheimer‘s disease. Science314(5800), 777–781 (2006).
  • Lansbury PT , LashuelHA. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature443(7113), 774–779 (2006).
  • Chapman MR , RobinsonLS, PinknerJSet al. Role of E. coli Curli operon in directing amyloid fiber formation. Science 295, 851–855 (2002).
  • Kelly JW , BalchWE. Amyloid as a natural product. J. Cell Biol.161(3), 461–462 (2003).
  • Salay LC , QiW, KeshetB, TammLK, FernandezEJ. Membrane interactions of a self-assembling model peptide that mimics the self-association, structure and toxicity of A β(1–40). Biochim. Biophys. Acta Biomembranes1788(9), 1714–1721 (2009).
  • Yan XH , HeQ, WangKW, DuanL, CuiY, LiJB. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Edit.46(14), 2431–2434 (2007).
  • Chiti F , BucciantiniM, CapanniC, TaddeiN, DobsonCM, StefaniM. Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci.10(12), 2541–2547 (2001).
  • Adler-Abramovich L , RechesM, SedmanVL, AllenS, TendlerSJB, GazitE. Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications. Langmuir22(3), 1313–1320 (2006).
  • Reches M , GazitE. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science300, 625–627 (2003).
  • Scanlon S , AggeliA. Self-assembling peptide nanotubes. Nano Today3(3–4), 22–30 (2008).
  • Ghadiri MR , GranjaJR, BuehlerLK. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature369(6478), 301–304 (1994).
  • Ghadiri MR , GranjaJR, MilliganRA, McReeDE, KhazanovichN. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature366(6453), 324–327 (1993).
  • Vauthey S , SantosoS, GongH, WatsonN, ZhangS. Molecular Self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA99(8), 5355–5360 (2002).
  • Colombo G , SotoP, GazitE. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnology25(5), 211–218 (2007).
  • Niu LJ , ChenXY, AllenS, TendlerSJB. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir23(14), 7443–7446 (2007).
  • Song YJ , ChallaSR, MedforthCJet al. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Comm. 9, 1044–1045 (2004).
  • Lekprasert B , SedmanV, RobertsCJ, TedlerSJB, NotingherI. Nondestructive raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes. Optics Letters35(24), 4193–4195 (2010).
  • Reches M , GazitE. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Phys. Biol.3, S10–S19 (2006).
  • Yan XH , CuiY, HeQet al. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies. Chem. Eur. J. 14(19), 5974–5980 (2008).
  • Song YJ , YangY, MedforthCJet al. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 126(2), 635–645 (2004).
  • Gao XY , MatsuiH. Peptide-based nanotubes and their applications in bionanotechnology. Adv. Mat.17(17), 2037–2050 (2005).
  • Reches M , GazitE. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Phys. Biol.4(4), 581–585 (2006).
  • Mahler A , RechesM, RechterM, CohenS, GazitE. Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv. Mat.18(11), 1365–1370 (2006).
  • Panda JJ , KaulA, AlamS, BabbarAK, ChauhanVS. Designed peptides as model self-assembling nanosystems: characterization and potential biomedical applications. Therapeutic Delivery2(2), 193–204 (2011).
  • van Hell AJ , FretzMM, CrommelinDJA, HenninkWE, MastrobattistaE. Peptide nanocarriers for intracellular delivery of photosensitizers. J. Control. Release141(3), 347–353 (2010).
  • Bose PP , DasAK, HegdeRP, ShamalaN, BanerjeeA. pH-sensitive nanostructural transformation of a synthetic self-assembling water-soluble tripeptide: nanotube to nanovesicle. Chem. Mat.19(25), 6150–6157 (2007).
  • Klyachko VA , JacksonMB. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature418(6893), 89–92 (2002).
  • Reches M , GazitE. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett.4(4), 581–585 (2004).
  • Matsumura S , UemuraS, MiharaH. Construction of biotinylated peptide nanotubes for arranging proteins. Mol. Biosystems1(2), 146–148 (2005).
  • Ryu J , LimSY, ParkCB. Photoluminescent Peptide Nanotubles. Adv. Mat.21(16), 1577 (2009).
  • Valery C , PaternostreM, RobertBet al. Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl Acad. Sci USA 100(18), 10258–10262 (2003).
  • Wang WP , YangZM, PatanavanichS, XuB, ChauY. Controlling self-assembly within nanospace for peptide nanoparticle fabrication. Soft Matter4(8), 1617–1620 (2008).
  • Orbach R , Adler-AbramovichL, ZigersonS, Mironi-HarpazI, SeliktarD, GazitE. Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules10(9), 2646–2651 (2009).
  • Yang ZM , GuHW, FuDG, GaoP, LamJK, XuB. Enzymatic formation of supramolecular hydrogels. Advanced Materials16(16), 1440 (2004).
  • Bowerman C , NilssonB. A reductive trigger for peptide self-assembly and hydrogelation. J. Am. Chem. Soc.132(28), 9526–9527 (2010)
  • Davis ME , MotionJPM, NarmonevaDAet al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4), 442–450 (2005).
  • Ellis-Behnke RG , LiangYX, YouSWet al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl Acad. Sci. USA 103(13), 5054–5059 (2006).
  • Gelain F , BottaiD, VescoviA, ZhangSG. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PloS One1(2), e119 (2006).
  • Horii A , WangXM, GelainF, ZhangSG. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3D migration. PloS One2(2), e190 (2007).
  • Hsieh PCH , DavisME, GannonJ, MacGillivrayC, LeeRT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest.116(1), 237–248 (2006).
  • Toledano S , WilliamsRJ, JayawarnaV, UlijnRV. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc.128(4), 1070–1071 (2006).
  • Zhao Y , TanakaM, KinoshitaT, HiguchiM, TanTW. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release. J. Control. Release142(3), 354–360 (2010).
  • Caron P , BeckersA, CullenDRet al. Efficacy of the new long-acting formulation of lanreotide (lanreotide Autogel) in the management of acromegaly. J. Clin. Endocrinol. Metab. 87(1), 99–104 (2002).
  • Kim JK , AndersonJ, JunHW, RepkaMA, JoS. Self-Assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery. Mol. Pharm.6(3), 978–985 (2009).
  • Granja JR , GhadiriMR. Channel-mediated transport of glucose across lipid bilayers. J. Am. Chem. Soc.116(23), 10785–10786 (1994).
  • Liu HF , ChenJA, ShenQ, FuW, WuW. Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil. Mol. Pharm.7(6), 1985–1994 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.