141
Views
0
CrossRef citations to date
0
Altmetric
Review

Delivery of Antigens Used for Vaccination: Recent Advances and Challenges

Pages 1351-1368 | Published online: 13 Oct 2011

Bibliography

  • Wilson-Welder JH , TorresMP, KipperMJ, MallapragadaSK, WannemuehlerMJ, NarasimhanB. Vaccine adjuvants: current challenges and future approaches. J. Pharm. Sci. (2008).
  • Mustafa AS . Vaccine potential of Mycobacterium tuberculosis-specific genomic regions: in vitro studies in humans. Exp. Rev. Vaccines8(10), 1309–1312 (2009).
  • Melnick JL . Current status of poliovirus infections. Clin. Microbiology Rev.9(3), 293–400 (1996).
  • Kim JH , Rerks-NgarmS, ExclerJL, MichaelNL. HIV vaccines: lessons learned and the way forward. Curr. Opin. HIV AIDS5(5), 428–434 (2010).
  • Cutts FT , ClementsCJ, BennettJV. Alternative routes of measles immunization: a review. Biologicals25, 323–338 (1997).
  • Bätzing-Feigenbaum J , PrucknerU, BeyerAet al. Spotlight on measles 2010: preliminary report of an ongoing measles outbreak in a subpopulation with low vaccination coverage in Berlin, Germany. January–March 2010. Eurosurveillance 15(13), 19527 (2010).
  • Deer B . How the case against the MMR vaccine was fixed. BMJ342, c5347 (2011).
  • Global Immunization Data. Report edited WHO and Unicef, Geneva, Switzerland. 1–4 (2010).
  • GIVS: Global Immunization Vision and Strategy. Report edited by WHO Department of Immunization, Vaccines and Biologicals and UNICEF Programme Division. Health Section, Geneva, 1–84 (2005).
  • Barouch DH . Challenges in the development of an HIV-1 vaccine. Nature455, 613–619 (2008).
  • McElrath MJ , HaynesBF. Induction of immunity to human immunodeficiency virus Type-1 by vaccination. Cell Press Immunity33, 542–554 (2010).
  • Sullivan T , TaraporewalaI, ZielinskiW. Innovations in intranasal vaccine delivery technology. BioPharm. Int.1–5 (2009).
  • Geisbert TW , GeisbertJB, LeungAet al. Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of Ebola virus. J. Virology 83(14), 7296–7304 (2009).
  • Lell B , AgnandjiS, von Glasenapp I et al. A randomized trial assessing the safety and immunogenicity of AS01 and AS02 adjuvanted RTS,S malaria vaccine candidates in children in Gabon. PLoS ONE4(10), e7611 (2009).
  • Ofokansi K , WinterG, FrickerG, CoesterC. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. EJPB76, 1–9 (2010).
  • Hwang S -A, Kruzel ML, Actor JK. Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Int. Immunopharmacol.5, 591–599 (2005).
  • Desprès P , CombredetC, Frenkiel M-P, Lorin C, Brahic M, Tangy F. Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J. Infect. Dis.191, 207–214 (2005).
  • Brandler S , RuffieC, NajburgVet al. Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses. Vaccine 28, 6730–6739 (2010).
  • Berthoud TK , HamillM, LilliePJet al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin. Infect. Dis. 1, 1–7 (2011).
  • Perez SA , von Hofe E, Kallinteris NL et al. A new era in anticancer peptide vaccines. Cancer116(9), 2071–2080 (2010).
  • Bade S , FreyA. Vaccines against transmissibe spongiform encephalopathies – an urgent need? Human vaccines4(1), 79–81 (2008).
  • Bade S , BaierM, BoetelT, FreyA. Intranasal immunization of Balb/c mice against prion protein attanuates orally acquired transmissible spongiform encephalopathy. Vaccine24, 1242–1253 (2006).
  • Mittal SK , HogenEschH, ParkK. Vaccines and other immunological products. In: Encyclopedia of Pharmaceutical Technology, Swabrick J (Ed.) Informa Healthcare USA, Inc., 3908–3927 (2007).
  • Muzzulini T . Immunmodulation of the Th cell differentiation using DNA immunization. Thesis at FU Berlin. FB Biologie, Chemie. Pharmazie1–106 (2004).
  • Ribeiro CMS , SchijnsVEJC. Immunology of vaccine adjuvants. In: Vaccine Adjuvants. Davies G (Ed.) Springer Science+Business Media, LCC, NY, USA 1–14 (2010).
  • Cohen J . The RTS,S malaria vaccine candidate: from concept to pivotal phase 3 testing. Presented at: Vaccine and ISV Annual Conference (2010).
  • Mann JF , AcevedoR, del Campo J, Pérez O, Ferro VA. Delivery systems: a vaccine strategy for overcoming mucosal tolerance? Exp. Rev. Vaccines8(1), 103–112 (2009).
  • Banchereau J , SteinmanRM. Dendritic cells and the control of immunity. Nature392, 245–252 (1998).
  • Holmgren J , CzerkinskyC. Mucosal immunity and vaccines. Nature Med. Suppl.11(4), S45–S53 (2005).
  • Kraehenbuhl J -P, Neutra MR. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol.16, 301–332 (2000).
  • Hathaway LJ , Kraehenbuhl J-P. The role of M cells in mucosal immunity. CMLS57, 323–332 (2000).
  • Kiyono H , FukuyamaS. NALT- versus Peyer´s-patch-mediated mucosal immunity. Nature Rev. Immunol.4, 699–710 (2004).
  • Davies SS . Nasal vaccines. Adv. Drug Deliv. Rev.51, 21–42 (2001).
  • Neutra MR , KozlowskiPA. Mucosal vaccines: the promise and the challenge. Nature Rev. Immunol.6, 148–158 (2006).
  • Vyas SP , GuptaPN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Exp. Rev. Vaccines6(3), 401–418 (2007).
  • Lawson LB , NortonEB, ClementsJD. Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol. DOI: 10.1016/j.coi.2011.03.009 (2011) (Epub ahead of print).
  • Kendall M . Engineering of needle-free physical methods to target epidermal cells for DNA vaccination. Vaccine24(21), 4651–4656 (2006).
  • Giudice EL , CampbellJD. Needle-free vaccine delivery. Adv. Drug Deliv. Rev.58, 68–89 (2006).
  • Bal SM , DingZ, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J. Control. Release148, 266–282 (2010).
  • Lauring AS , JonesJO, AndinoR. Rationalizing the development of live attenuated virus vaccines. Nature Biotechnol.28, 573–579 (2010).
  • Gordon SB , FrenchN. Should we develop an inhaled anti-pneumococcal vaccine for adults? Curr. Med. Chem. Anti-infective Agents4, 75–79 (2005).
  • Riddell A , ButteryJ. Vaccines against meningococcal disease: current and future technologies. Exp. Opin. Biol. Ther.1(3), 385–399 (2001).
  • Poland GA . Prevention of meningococcal disease: current use of polysaccharide and conjugate vaccines. Clin. Infect. Dis.50(Suppl. 2), S45–S53 (2010).
  • Nochi T , TagakiH, YukiYet al. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. PNAS 104(26), 10986–10991 (2007).
  • Jabbal-Gill I , FisherAN, RappuolitR, DavisSS, IllumL. Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine16(20), 2039–2046 (1998).
  • McNeela EA , O‘ConnorD, Jabbal-GillIet al. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine 19, 1188–1198 (2001).
  • Singh M , O´HaganD. Recent advances in vaccine adjuvants. Pharm. Res.19(6), 715–728 (2002).
  • Holmgren J , LebensM. Mucosal vaccines based on the use of cholera toxin B subunit as immunogen and antigen carrier. Dev. Biol. Stand.82, 215–227 (1994).
  • Sette A , RappuoliR. Reverse vaccinology: developing vaccines in the era of genomics. Cell Press Immunity33, 530–541 (2010).
  • Moriel DG , ScarselliM, SerinoL, MoraM, RappuoliR, MasignaniV. Genome-based vaccine development: a short cut for the future. Human Vaccines4(3), 184–188 (2008).
  • Robinson HL . DNA vaccines: basic mechanism and immune responses. Int. J. Mol. Med.4(5), 549–604 (1999).
  • Bröker M . Adjuvanzien für Impfstoffe. MMP25(11), 373–378 (2002).
  • Garcon N , ChomezP, Van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Exp. Rev. Vaccines6(5), 723–739 (2007).
  • Ott G . The adjuvant MF59: the 1998 perspective, clinical performance and mechanism of action. Res. Immunol.149, 25–27 (1998).
  • Gratton SEA , RoppPA, PohlhausPDet al. The effect of particle design on cellular internalization pathways. Proc. Nat. Acad. Sci. 105(33), 11613–11618 (2008).
  • Fifis T , GamvrellisA, Crimeen-IrwinBet al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).
  • Chadwick S , KriegelC, AmijiMM. Delivery strategies to enhance mucosal vaccination. Exp. Opin. Biol. Ther.9(4), 427–440 (2009).
  • Malyala P , SinghM. Micro/nanoparticle adjuvants: preparation and formulation with antigens. In: Vaccine Adjuvants. Davies G (Ed.) Springer Science and Business Media, LCC, NY, USA, 91–101 (2010).
  • Sharma S , MukkurTK, BensonHA, ChenY. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci.98(3), 812–843 (2009).
  • Wiley JA , RichertLE, SwainSDet al. Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses. PLoS ONE 4(9), e7142 (2009).
  • Slütter B , HagenaarsN, JiskootW. Rational design of nasal vaccines. J. Drug Target.16(1), 1–17 (2008).
  • Borges O , Cordeiro-da-SilvaA, TavaresJet al. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm. 69(2), 405–416 (2008).
  • Lingnau K , RiedlK, von Gabain A. IC31 and IC30, novel types of vaccine adjuvant based on peptide delivery systems. Exp. Rev. Vaccines6(5), 741–746 (2007).
  • Holmgren J , CzerkinskyC, ErikssonK, MharandiA. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine21, S2/89–S82/95 (2003).
  • Legrand D , ElassE, PierceA, MazurierJ. Lactoferrin and host defence: an overview of its immuno-modulating and anti-inflammatory properties. BioMetals17, 225–229 (2004).
  • Actor JK , Hwang S-A, Kruzel ML. Lactoferrin as natural immune modulator. Curr. Pharm. Des.15(17), 1956–1973 (2009).
  • Kanwar JR , PalmanoKP, SunXet al. ‘Iron-saturated‘ lactoferrin is a potent natural adjuvant for augmenting cancer chemotherapy. Iron-saturated lactoferrin for cancer. Immunol. Cell. Biol. 86, 277–288 (2008).
  • Perrie Y , MohammedAR, KirbyDJ, McNeilSE, BramwellVW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm.364, 272–280 (2008).
  • Soane RJ , HinchcliffeM, DavisSS, IllumL. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int. J. Pharm.217(1–2), 183–191 (2001).
  • Boonyo W , JungingerHE, WaranuchN, PolnokA, PitaksuteepongT. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J. Control. Release121, 168–175 (2007).
  • Aspden TJ , MasenJTD, JonesNS, LoweJ, Skaugrud Ö, Illum L. Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J. Pharm. Sci.86(4), 509–513 (1997).
  • des Rieux A , FievezV, GarinotM, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release116, 1–27 (2006).
  • Tafaghodi M , TabassiSAS, Jaafaria M-R, Zakavid SR, Momen-Nejad M. Evaluation of the clearance characteristics of various microspheres in the human nose by γ-scintigraphy. Int. J Pharm.280(1–2), 125–135 (2004).
  • Krause A , WorgallS. Delivery of antigens by viral vectors for vaccination. Therapeutic Delivery2(1), 51–70 (2011).
  • Tangy F , NaimHY. Live attenuated measles vaccine as a potential multivalent pediatric vaccination vector. Viral Immunol.18(2), 317–326 (2005).
  • Guerbois M , MorisA, CombredetCet al. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic. Virology 388, 191–203 (2009).
  • Lorin C , MolletL, DelebecqueFet al. A single injection of recombinant measles virus vaccines expressing human immunodeficiency virus (HIV) type 1 clade b envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J. Virology 78(1), 146–157 (2004).
  • Duc LH , CuttingSM. Bacterial spores as heat stable vaccine vehicles. Exp. Opin. Biol. Ther.3(8), 1263–1270 (2003).
  • Roy P , NoadR. Virus-like particles as a vaccine delivery system: myths and facts. Human Vaccines4(1), 5–8 (2008).
  • Vujanic A , WeeJLK, SnibsonKJet al. Combined mucosal and systemic immunity following pulmonary delivery of ISCOMATRIX™ adjuvanted recombinant antigens. Vaccine DOI: 10.1016/j.vaccine.2010.01.018 (2010) (Epub ahead of print).
  • Saraf S , MishraD, AsthanaA, JainR, SinghS, JainNK. Lipid microparticles for mucosal immunization against hepatitis B. Vaccine24(1), 45–56 (2006).
  • Tiwari S , GoyalAT, KhatriK, MishraN, VyasSP. Gel core liposomes: an advanced carrier for improved vaccine delivery. J. Microencapsulation26(1), 75–82 (2009).
  • Lemoine D , DeschuyteneerM, HoggeF, PréatV. Intranasal immunization against influenza virus using polymeric particles. J. Biomater. Sci. Polym. Ed.10(8), 805–825 (1999).
  • Jaganathan KS , VyasSP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine24(19), 4201–4211 (2006).
  • Ho J , HuangY, DanquahMK, WangH, FordeGM. Synthesis of biodegradable polymer–mesoporous silica composite microspheres for DNA prime-protein boost vaccination. European J. Pharm. Sci.39, 412–420 (2010).
  • Tahara K , YamamotoH, HirashimaN, KawashimaY. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects. EJPB74, 421–426 (2010).
  • Singh J , PanditS, BramwellVW, AlparHO. Diphtheria toxoid loaded poly-(E-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods38, 96–105 (2006).
  • Moebus K , SiepmannJ, BodmeierR. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur. J. Pharm. Biopharm.72, 42–53 (2009).
  • Sivadas N , O‘RourkeD, TobinAet al. A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. Int. J. Pharm. 358, (2008).
  • van der Lubben IM , KerstenG, FretzMM, BeuveryC, VerhoefJC, JungingerHE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine21, 1400–1408 (2003).
  • Illum L . Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J. Pharm. Sci.96(3), 473–483 (2007).
  • Illum L , Jabbal-GillI, HinchcliffeM, FisherAN, DavisSS. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev.51, 81–96 (2001).
  • Alpar HO , SomavarapuS, AtuahKN, BramwellVW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev.57, 411–430 (2005).
  • Prego C , PaolicelliP, DíazBet al. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine DOI: 10.1016/j.vaccine.2010.01.011 (2010) (Epub ahead of print).
  • Amidi M , MastrobattistaE, JiskootW, HenninkWE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev.62, 59–82 (2010).
  • Grenha A , Remunan-LopezC, CarvalhoELS, SeijoB. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur. J. Pharm. Biopharm.69, 83–93 (2008).
  • Nochi T , YukiY, TakahashiHet al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Mater. 9, 572–578 (2010).
  • Debin A , KravtzoffR, SantiagoJVet al. Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine 20(21–22), 2752–2763 (2002).
  • Kojima N , BiaoL, NakayamaT, IshiiM, IkeharaY, TsujimuraK. Oligomannose-coated liposomes as a therapeutic antigen-delivery and an adjuvant vehicle for induction of in vivo tumor immunity. J. Control. Release129, 26–32 (2008).
  • Brandau DT , JonesLS, WiethoffCM, RexroadJ, MiddaughCR. Thermal stability of vaccines. J. Pharm. Sci.92(2), 218–231 (2003).
  • de Swart RL , LiCalsiC, QuirkAVet al. Measles vaccination of macaques by dry powder inhalation. Vaccine 25, 1183–1190 (2007).
  • Nelson C . Effects of Freezing on Vaccine Potency. PATH. 1–4 (2003).
  • Lloyd J . Technologies for Vaccine Delivery in the 21st Century. WHO. 1–25 (2000).
  • Nelson C , WidjayaA, WittetS. Using Uniject to Increase the Safety and Effectiveness of Hepatitis B Immunzation. PATH Occasional Paper. 6, 1–8 (2002).
  • Geeraedts F , SalujaV, ter Veer W et al. Preservation of the immunogenicity of dry-powder influenza H5N1 whole inactivated virus vaccine at elevated storage temperatures. AAPS12(2), 215–222 (2010).
  • Arakawa T , PrestrelskiSJ, KenneyWC, CarpenterJF. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev.10, 1–28 (1993).
  • Amorij J -P, Huckriede A, Wilschut J, Frijlink HW, Hinrichs WLJ. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm. Res.25(6), (2008).
  • Amorij J -P, Meulenaar J, Hinrichs WLJ et al. Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine25, 6447–6457 (2007).
  • Leukocare. Stabilizing composition for immobilized biomolecules. European Patent Application (EP 2236520 A1), 1–36 (2010).
  • Alcock R , CottinghamMG, RollierCSet al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. SciTranslMed 2(19), (2010).
  • Dubin CH . Prefilled syringes gain favor with pharma, caregivers and patients. Drug Del. Technol.10(5), 38–41 (2010).
  • Ziegler AS , SchlueckerE, Reichel-LesnianskiP, AltN, LeeG. Inactivation effects on proteins in a needle-free vaccine injector. Eng. Life Sci.6(4), 384–393 (2006).
  • Helenius E , BoijeM, Niklander-TeeriV, PalvaET, TeeriTH. Gene delivery into intact plants using the Helios™ Gene Gun. Plant Mol. Biol. Rep.18, 287a–2871 (2000).
  • Stoecklinger A , EtichaTD, MesdaghiMet al. Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH g-1 Class switching in response to gene gun vaccines. J. Immunol. 186, 1377–1383 (2011).
  • Hickling J , JonesR. Intradermal Delivery of Vaccines: a Review of the Literature and the Potential for Development for Use in Low- and Middle-Income Countries. PATH and WHO. 1–94 (2009).
  • Prausnitz MR , MiksztaJA, CormierM, AndrianovAK. Microneedle-based vaccines. Curr. Top. Microbiol. Immunol.333, 369–393 (2009).
  • Coulman SA , BirchallJC, AlexAet al. In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography. Pharm. Res.28, 66–81 (2011).
  • Wilke N , MulcahyA, Ye S-R, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics J.36, 650–656 (2005).
  • Moore AC , CareyJB, CreanA, VrdoljakA, McGrathM, O‘MahonyC. Percutaneous immunization using ImmuPatch: needle-free vaccination that results in stronger T cell and antibody responses compared with traditional immunization routes. Presented at: Vaccine and ISV Annual Conference, Vienna, Austria 07.4 (2010).
  • Chen X , FernandoGJP, CrichtonMLet al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Rel. DOI: 10.1016/j.jconrel.2011.02.026 (2011) (Epub ahead of print).
  • Badran MM , KuntscheJ, FahrA. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: dependency on needle size and applied formulation. Eur. J. Pharm. Sci.36, 511–523 (2009).
  • Sullivan SP , KoutsonanosDG, del Pilar Martin M et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Med. Suppl.16(8), 915–921 (2010).
  • IntercellAG. Intercell Platform Technologies and Products. Company report. 1–62 (2009).
  • Rosati M , ValentinA, JalahRet al. Pavlakis: increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 26, 5223–5229 (2008).
  • Tjelle TE , SalteR, MathiesenI, KjekenR. A novel electroporation device for gene delivery in large animals and humans. Vaccine24, 4667–4670 (2006).
  • Kitzmueller S , WeissR, HessenbergerM, BoehlerC, ThalhamerJ, ScheiblhoferS. Transdermal vaccine delivery via laser-generated micropores. Vaccine and ISV Annual Conference, Vienna. P2.1.09 (2010).
  • Kalia YN , BachhavYG, BragagnaT, BöhlerC. P.L.E.A.S.E.® (Painless Laser Epidermal System): a new laser microporation technology. Drug Deliv. Technol.8(5), 26–31 (2008).
  • Sullivan VJ , MiksztaJA, LaurentP, HuangJ, FordB. Noninvasive delivery technologies: respiratory delivery of vaccines. Exp. Opin. Drug Deliv.3(1), 87–95 (2006).
  • Belshe RB , EdwardsKM, VesikariTet al. Live attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med. 356, 685–696 (2007).
  • Henao-Restrepo AM , GrecoM, LaurieX, JohnO, AguadoT. Project tWPDGfMA: measles aerosol vaccine project. Procedia in Vaccinology2, 147–150 (2010).
  • De Filette M , FiersW, MartensWet al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine 24(44–46), 6597–6601 (2006).
  • Lambkin R , OxfordJS, BossuytSet al. Strong local and systemic protective immunity induced in the ferret model by an intranasal virosome-formulated influenza subunit vaccine. Vaccine 4390–4396 (2004).
  • Slütter B , BalSM, QueIet al. Antigen–adjuvant nanoconjugates for nasal vaccination: an improvement over the use of nanoparticles? Mol. Pharmac. 7(6), 2207–2215 (2010).
  • Sievers RE , CapeSP, KisichKOet al. Challenges of developing a stable dry powder live viral vaccine. In: RDD 2008. Dalby RN (Ed.). Scottsdale, Arizona, USA (2008).
  • Cape SP , McAdamsDH, Manion JaR et al. Inhalable dry powder live-attenuated measles virus vaccine prepared by the CAN-BD process, a novel spray drying alternative to lyophilisation. CHI PepTalk. San Diego, CA, USA (2010).
  • Amorij J -P, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine8707–8717 (2007).
  • McAdams DH , CapeSP, FrederickED, GarceaRL, SieversRE. Characterization of myo-inostitol as a particle-forming and stabilizing excipient for inhalable measles and human papillomavirus vaccines. In: RDD 2010. Dalby RN (Ed.). Orlando, FL, USA (2010).
  • Sievers RE , CapeSP, McAdamsDHet al. Inhalation delivery of aerosols of unit-dose dry powder vaccines vs. liquid vaccines. ISAM Conference. Monterey, CA, USA (2009).
  • Kisich KO , HigginsMP, ParkIet al. Dry powder measles vaccine: particle deposition, virus replication, and immune response in cotton rats following inhalation. Vaccine 29(5), 905–912 (2011).
  • Lin W -H, Griffin DE, Rota PA et al. Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques. PNAS108(7), 2987–2992 (2011).
  • Sievers RE , BestJA, CapeSP. Human-powered dry powder inhaler and dry powder inhaler compositions. International Patent Application (WO 2008/021451 A2), 1–33 (2008).
  • Friebel C , SteckelH. Single-use disposable dry powder inhalers for pulmonary drug delivery. Exp. Opin. Drug Deliv. DOI: 10.1517/17425247.2010.53837 (2010) (Epub ahead of print).
  • Kaye RS , PurewalTS, AlparOH. Development and testing of particulate formulations for the nasal delivery of antibodies. J. Control. Release135, 127–135 (2009).
  • Scherließ R , TrowsS. Novel formulation concept for particulate uptake of vaccines via the nasal associated lymphoid tissue. Procedia in Vaccinology. Manuscript accepted (2011).
  • Lebre F , BorchardG, de Lima MCP, Borges O. Progress towards a needle-free hepatitis B vaccine. Pharm. Res.28, 986–1012 (2011).
  • WHO. Recommended Routine Immunization – Summary of WHO Position Papers (2010).
  • Loudon PT , YagerEJ, LynchDTet al. GM-CSF Increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. PLoS ONE 5(6), e11021 (2010).
  • Costantino HR , IllumL, BrandtG, JohnsonPH, QuaySC. Intranasal delivery: physicochemical and therapeutic aspects. Int. J. Pharm.337(1–2), 1–24 (2007).
  • Marx D , LeitzM, PfitzerK. Intranasal vaccination. Inhalation4(3), 8–11 (2010).
  • Chiarello K . Bi-directional nasal device delivers drug on exhalation. Pharmac. Science Technol. News15–18 (2004).
  • de Swart RL , KuikenT, Fernandez-de Castro J et al. Aerosol measles vaccination in macaques: preclinical studies of immune responses and safety. Vaccine24, 6424–6436 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.