230
Views
0
CrossRef citations to date
0
Altmetric
Review

Ultrasound and microbubble-assisted Gene Delivery: Recent Advances and Ongoing Challenges

, , , &
Pages 1199-1215 | Published online: 23 Oct 2012

References

  • Raper SE , ChirmuleN, LeeFSet al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80(1–2), 148–158 (2003).
  • Hacein-Bey-Abina S , von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med.348(3), 255–256 (2003).
  • Mahato RI . Non-viral peptide-based approaches to gene delivery. J. Drug Target.7(4), 249–268 (1999).
  • Midoux P , PichonC, YaouancJJ, JaffresPA. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharm.157(2), 166–178 (2009).
  • Wagner E , OgrisM, ZaunerW. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev.30(1–3), 97–113 (1998).
  • Glover DJ . Artificial viruses: exploiting viral trafficking for therapeutics. Infect Disord. Drug Targets.12(1), 68–80 (2011).
  • Miyata K , NishiyamaN, KataokaK. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem. Soc. Rev.41(7), 2562–2574 (2012).
  • Wagner E . Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res.45(7), 1005–1013 (2011).
  • Mitragotri S . Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov.4(3), 255–260 (2005).
  • Lindner JR . Molecular imaging with contrast ultrasound and targeted microbubbles. J. Nucl. Cardiol.11(2), 215–221 (2004).
  • Wood RW , LoomisAL. The physical and biological effects of high-frequency sound-waves of great intensity. Philos. Mag.4(22), 417–436 (1927).
  • Fechheimer M , BoylanJF, ParkerS, SiskenJE, PatelGL, ZimmerSG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl Acad. Sci. USA84(23), 8463–8467 (1987).
  • Tachibana K , TachibanaS. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation92(5), 1148–1150 (1995).
  • Barnett SB , Ter Haar GR, Ziskin MC, Rott HD, Duck FA, Maeda K. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med. Biol.26(3), 355–366 (2000).
  • Kinoshita M , McDannoldN, JoleszFA, HynynenK. Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem. Biophys. Res. Commun.340(4), 1085–1090 (2006).
  • Frenkel V . Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev.60(10), 1193–1208 (2008).
  • Kost J , LeongK, LangerR. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc. Natl Acad. Sci. USA86(20), 7663–7666 (1989).
  • O‘Neill BE , LiKC. Augmentation of targeted delivery with pulsed high intensity focused ultrasound. Int. J. Hyperthermia24(6), 506–520 (2008).
  • Rapoport N , GaoZ, KennedyA. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl Cancer Inst.99(14), 1095–1106 (2007).
  • Schroeder A , AvnirY, WeismanSet al. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23(7), 4019–4025 (2007).
  • Schroeder A , KostJ, BarenholzY. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids162(1–2), 1–16 (2009).
  • Lide DR . Speed of sound in various media. In: CRC Handbook of Chemistry and Physics (84th Edition). CRC Press, Boca Raton, FL, USA (2003).
  • Goss SA , FrizzellLA, DunnF. Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med. Biol.5(2), 181–186 (1979).
  • Postema M . Fundamentals of Medical Ultrasonics. Spon Press, London, UK (2011).
  • Postema M , GiljaOH. Contrast-enhanced and targeted ultrasound. World J. Gastroenterol.17(1), 28–41 (2011).
  • Morgan KE , AllenJS, DaytonPA, ChomasJE, KlibaovAL, FerraraKW. Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelectr. Freq. Control47(6), 1494–1509 (2000).
  • Dayton PA , MorganKE, KlibanovAL, BrandenburgerGH, FerraraKW. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control46(1), 220–232 (1999).
  • Wu J , NyborgWL. Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev.60(10), 1103–1116 (2008).
  • Postema M , KotopoulisS, DelalandeA, GiljaOH. Sonoporation: why microbubbles create pores. Ultraschall in der Medizin33(1), 97–98 (2012).
  • Prentice P , CuschierpA, DholakiaK, PrausnitzM, CampbellP. Membrane disruption by optically controlled microbubble cavitation. Nat. Phys.1(2), 107–110 (2005).
  • van Wamel A , KooimanK, HarteveldMet al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112(2), 149–155 (2006).
  • Duvshani-Eshet M , MachlufM. Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J. Control. Release108(2–3), 513–528 (2005).
  • Kaddur K , LebegueL, TranquartF, MidouxP, PichonC, BouakazA. Transient transmembrane release of green fluorescent proteins with sonoporation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(7), 1558–1567 (2010).
  • Mehier-Humbert S , BettingerT, YanF, GuyRH. Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J. Control. Release104(1), 213–222 (2005).
  • Mehier-Humbert S , BettingerT, YanF, GuyRH. Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J. Control. Release104(1), 203–211 (2005).
  • Ferrara KW . Driving delivery vehicles with ultrasound. Adv. Drug Deliv. Rev.60(10), 1097–1102 (2008).
  • Unger EC , PorterT, CulpW, LabellR, MatsunagaT, ZutshiR. Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev.56(9), 1291–1314 (2004).
  • Krasovitski B , FrenkelV, ShohamS, KimmelE. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl Acad. Sci. USA108(8), 3258–3263 (2011).
  • van Wamel A , BouakazA, VersluisM, de Jong N. Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction. Ultrasound Med. Biol.30(9), 1255–1258 (2004).
  • Postema M , GiljaOH. Jetting does not cause sonoporation. Biomed. Eng.55(Suppl. 1), 19–20 (2010).
  • Marmottant P , BibenT, HilgenfeldtS. Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proc. R. Soc. A464(2095), 1781–1800 (2008).
  • Marmottant P , HilgenfeldtS. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature423(6936), 153–156 (2003).
  • Frenkel V , KimmelE, IgerY. Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound Med. Biol.26(3), 473–480 (2000).
  • Delalande A , KotopoulisS, RoversT, PichonC, PostemaM. Sonoporation at a low mechanical index. Bubble Sci. Eng. Tech.3(1), 3–11 (2011).
  • Mukherjee D , WongJ, GriffinBet al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J. Am. Coll. Cardiol. 35(6), 1678–1686 (2000).
  • Taniyama Y , TachibanaK, HiraokaKet al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105(10), 1233–1239 (2002).
  • Zhou Y , KumonRE, CuiJ, DengCX. The size of sonoporation pores on the cell membrane. Ultrasound Med. Biol. (2009).
  • Deng CX , SielingF, PanH, CuiJ. Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol.30(4), 519–526 (2004).
  • Karshafian R , BevanPD, WilliamsR, SamacS, BurnsPN. Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol.35(5), 847–860 (2009).
  • Juffermans LJ , MeijeringDB, van Wamel A et al. Ultrasound and microbubble-targeted delivery of therapeutic compounds: ICIN report project 49: drug and gene delivery through ultrasound and microbubbles. Neth. Heart J.17(2), 82–86 (2009).
  • Fan Z , KumonRE, ParkJ, DengCX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J. Control. Release142(1), 31–39 (2010).
  • Kumon RE , AehleM, SabensDet al. Spatiotemporal effects of sonoporation measured by real-time calcium imaging. Ultrasound Med. Biol. 35(3), 494–506 (2009).
  • Kumon RE , AehleM, SabensD, ParikhP, KourennyiD, DengCX. Ultrasound-induced calcium oscillations and waves in Chinese hamster ovary cells in the presence of microbubbles. Biophys. J.93(6), L29–L31 (2007).
  • Park J , FanZ, DengCX. Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells. J. Biomech.44(1), 164–169 (2011).
  • Paula DM , Valero-LapchikVB, Paredes-GameroEJ, HanSW. Therapeutic ultrasound promotes plasmid DNA uptake by clathrin-mediated endocytosis. J. Gene Med.13(7–8), 392–401 (2011).
  • Meijering BD , JuffermansLJ, van Wamel A et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ. Res.104(5), 679–687 (2009).
  • Eliasson L , ProksP, AmmalaCet al. Endocytosis of secretory granules in mouse pancreatic beta-cells evoked by transient elevation of cytosolic calcium. J. Physiol. 493(Pt 3), 755–767 (1996).
  • MacDonald PE , EliassonL, RorsmanP. Calcium increases endocytotic vesicle size and accelerates membrane fission in insulin-secreting INS-1 cells. J. Cell. Sci.118(Pt 24), 5911–5920 (2005).
  • Juffermans LJ , DijkmansPA, MustersRJ, VisserCA, KampO. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am. J. Physiol. Heart Circ. Physiol.291(4), H1595–H1601 (2006).
  • Bao S , ThrallBD, MillerDL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol.23(6), 953–959 (1997).
  • Miller DL , ThomasRM, FrazierME. Ultrasonic cavitation indirectly induces single strand breaks in DNA of viable cells in vitro by the action of residual hydrogen peroxide. Ultrasound Med. Biol.17(7), 729–735 (1991).
  • Juffermans LJ , KampO, DijkmansPA, VisserCA, MustersRJ. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med. Biol.34(3), 502–508 (2008).
  • Tran TA , Le Guennec JY, Bougnoux P, Tranquart F, Bouakaz A. Characterization of cell membrane response to ultrasound activated microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control.55(1), 43–49 (2008).
  • Tran TA , RogerS, Le Guennec JY, Tranquart F, Bouakaz A. Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. Ultrasound Med. Biol.33(1), 158–163 (2007).
  • Greenleaf WJ , BolanderME, SarkarG, GoldringMB, GreenleafJF. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med. Biol.24(4), 587–595 (1998).
  • Stride E , EdirisingheM. Novel preparation techniques for controlling microbubble uniformity: a comparison. Med. Biol. Eng. Comput.47(8), 883–892 (2009).
  • Zhao YZ , LiangHD, MeiXG, HalliwellM. Preparation, characterization and in vivo observation of phospholipid-based gas-filled microbubbles containing hirudin. Ultrasound Med. Biol.31(9), 1237–1243 (2005).
  • Huang SL . Liposomes in ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev.60(10), 1167–1176 (2008).
  • Klibanov AL . Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconj. Chem.16(1), 9–17 (2005).
  • Aoi A , WatanabeY, MoriS, TakahashiM, VassauxG, KodamaT. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med. Biol.34(3), 425–434 (2008).
  • Lentacker I , GeersB, DemeesterJ, De Smedt SC, Sanders NN. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol. Ther.18(1), 101–108 (2010).
  • Ibsen S , BenchimolM, SimbergD, SchuttC, SteinerJ, EsenerS. A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload. J. Control. Release155(3), 358–366 (2011).
  • Lee H , PastorRW. Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. J.Phys. Chem. B115(24), 7830–7837 (2011).
  • Suzuki R , TakizawaT, NegishiY, UtoguchiN, MaruyamaK. Effective gene delivery with liposomal bubbles and ultrasound as novel non-viral system. J. Drug Target.15(7–8), 531–537 (2007).
  • Un K , KawakamiS, SuzukiR, MaruyamaK, YamashitaF, HashidaM. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials31(30), 7813–7826 (2010).
  • Kheirolomoom A , DaytonPA, LumAFet al. Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J. Control. Release 118(3), 275–284 (2007).
  • Klibanov AL . Ultrasound molecular imaging with targeted microbubble contrast agents. J. Nucl. Cardiol.14(6), 876–884 (2007).
  • Lindner JR , SongJ, ChristiansenJ, KlibanovAL, XuF, LeyK. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation104(17), 2107–2112 (2001).
  • Anderson CR , RychakJJ, BackerM, BackerJ, LeyK, KlibanovAL. scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest. Radiol.45(10), 579–585 (2010).
  • Anwer K , KaoG, ProctorBet al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 7(21), 1833–1839 (2000).
  • Vannan M , McCreeryT, LiPet al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J. Am. Soc. Echocardiogr. 15(3), 214–218 (2002).
  • Christiansen JP , FrenchBA, KlibanovAL, KaulS, LindnerJR. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med. Biol.29(12), 1759–1767 (2003).
  • Hayashi S , MizunoM, YoshidaJ, NakaoA. Effect of sonoporation on cationic liposome-mediated IFNbeta gene therapy for metastatic hepatic tumors of murine colon cancer. Cancer Gene Ther.16(8), 638–643 (2009).
  • Tlaxca JL , AndersonCR, KlibanovALet al. Analysis of in vitro transfection by sonoporation using cationic and neutral microbubbles. Ultrasound Med. Biol. 36(11), 1907–1918 (2010).
  • Lentacker I , De Geest BG, Vandenbroucke RE et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir22(17), 7273–7278 (2006).
  • Borden MA , CaskeyCF, LittleE, GilliesRJ, FerraraKW. DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir23(18), 9401–9408 (2007).
  • Vandenbroucke RE , LentackerI, DemeesterJ, De Smedt SC, Sanders NN. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles. J. Control. Release126(3), 265–273 (2008).
  • Sirsi SR , HernandezSL, ZielinskiLet al. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J. Control. Release 157(2), 224–234 (2012).
  • Suzuki R , MaruyamaK. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure. Methods Mol. Biol.605, 473–486 (2010).
  • Suzuki R , TakizawaT, NegishiYet al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J. Control. Release 117(1), 130–136 (2007).
  • Suzuki R , TakizawaT, NegishiY, UtoguchiN, MaruyamaK. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm.354(1–2), 49–55 (2008).
  • Suzuki R , NamaiE, OdaYet al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J. Control. Release 142(2), 245–250 (2010).
  • Suzuki R , TakizawaT, NegishiYet al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J. Control. Release 125(2), 137–144 (2008).
  • Newman CM , BettingerT. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther.14(6), 465–475 (2007).
  • Pichon C , KaddurK, MidouxP, TranquartF, BouakazA. Recent advances in gene delivery with ultrasound and microbubbles. J. Exp. Nanosci.3(1), 17–40 (2008).
  • Suzuki R , OdaY, UtoguchiN, MaruyamaK. Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J. Control. Release149(1), 36–41 (2011).
  • Haag P , FrauscherF, GradlJet al. Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J. Steroid Biochem. Mol. Biol. 102(1–5), 103–113 (2006).
  • Kim HJ , GreenleafJF, KinnickRR, BronkJT, BolanderME. Ultrasound-mediated transfection of mammalian cells. Hum. Gene Ther.7(11), 1339–1346 (1996).
  • Huber PE , PfistererP. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther.7(17), 1516–1525 (2000).
  • Huber PE , MannMJ, MeloLGet al. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther. 10(18), 1600–1607 (2003).
  • Huber PE , JenneJ, DebusJ, WannenmacherMF, PfistererP. A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells. Ultrasound Med. Biol.25(9), 1451–1457 (1999).
  • Li T , TachibanaK, KurokiM. Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice – initial results. Radiology229(2), 423–428 (2003).
  • Chen S , ShohetRV, BekeredjianR, FrenkelP, Grayburn PA. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J. Am. Coll. Cardiol.42(2), 301–308 (2003).
  • Bekeredjian R , ChenS, FrenkelPA, GrayburnPA, ShohetRV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation108(8), 1022–1026 (2003).
  • Kondo I , OhmoriK, OshitaAet al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J. Am. Coll. Cardiol. 44(3), 644–653 (2004).
  • Leong-Poi H , KuliszewskiMA, LekasMet al. Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ. Res. 101(3), 295–303 (2007).
  • Kobulnik J , KuliszewskiMA, StewartDJ, LindnerJR, Leong-PoiH. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection. J. Am. Coll. Cardiol.54(18), 1735–1742 (2009).
  • Fujii H , SunZ, LiSHet al. Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc. Imaging 2(7), 869–879 (2009).
  • Fujii H , LiSH, WuJet al. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur. Heart J. 32(16), 2075–2084 (2011).
  • Reddi AH . Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol.16(3), 247–252 (1998).
  • Nakashima M , TachibanaK, IoharaK, ItoM, IshikawaM, AkamineA. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum. Gene Ther.14(6), 591–597 (2003).
  • Sheyn D , Kimelman-BleichN, PelledG, ZilbermanY, GazitD, GazitZ. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther.15(4), 257–266 (2007).
  • Yang RS , LinWL, ChenYZet al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone 36(2), 276–283 (2005).
  • Osawa K , OkuboY, NakaoK, KoyamaN, BesshoK. Osteoinduction by microbubble-enhanced transcutaneous sonoporation of human bone morphogenetic protein-2. J. Gene Med.11(7), 633–641 (2009).
  • Katagiri T , YamaguchiA, IkedaTet al. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem. Biophys. Res. Commun. 172(1), 295–299 (1990).
  • Andersson GB . Epidemiological features of chronic low-back pain. Lancet354(9178), 581–585 (1999).
  • Freemont AJ , PeacockTE, GoupilleP, HoylandJA, O‘BrienJ, JaysonMI. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet350(9072), 178–181 (1997).
  • Nishida K , DoitaM, TakadaTet al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 31(13), 1415–1419 (2006).
  • Suzuki T , NishidaK, KakutaniKet al. Sustained long-term RNA interference in nucleus pulposus cells in vivo mediated by unmodified small interfering RNA. Eur. Spine J. 18(2), 263–270 (2009).
  • Delalande A , BouakazA, RenaultGet al. Ultrasound and microbubble-assisted gene delivery in Achilles tendons: long lasting gene expression and restoration of fibromodulin KO phenotype. J. Control. Release 156(2), 223–230 (2011).
  • Delalande A , BureauMF, MidouxP, BouakazA, PichonC. Ultrasound-assisted microbubbles gene transfer in tendons for gene therapy. Ultrasonics50(2), 269–272 (2010).
  • Lou J . In vivo gene transfer into tendon by recombinant adenovirus. Clin. Orthop. Relat. Res. (Suppl. 379), S252–S255 (2000).
  • Glover DJ , LippsHJ, JansDA. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev.6(4), 299–310 (2005).
  • Duvshani-Eshet M , BennyO, MorgensternA, MachlufM. Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol. Cancer Ther.6(8), 2371–2382 (2007).
  • Duvshani-Eshet M , MachlufM. Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent: from in vitro to in vivo setting. Cancer Gene Ther.14(3), 306–315 (2007).
  • Collins CG , TangneyM, LarkinJOet al. Local gene therapy of solid tumors with GM-CSF and B7–1 eradicates both treated and distal tumors. Cancer Gene Ther. 13(12), 1061–1071 (2006).
  • Craig R , CutreraJ, ZhuS, XiaX, LeeYH, LiS. Administering plasmid DNA encoding tumor vessel-anchored IFN-alpha for localizing gene product within or into tumors. Mol. Ther.16(5), 901–906 (2008).
  • Hauff P , SeemannS, ReszkaRet al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology 236(2), 572–578 (2005).
  • Iwanaga K , TominagaK, YamamotoKet al. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther. 14(4), 354–363 (2007).
  • Li YS , DavidsonE, ReidCN, McHaleAP. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett.273(1), 62–69 (2009).
  • Sato M , O‘GaraP, HardingSE, FullerSJ. Enhancement of adenoviral gene transfer to adult rat cardiomyocytes in vivo by immobilization and ultrasound treatment of the heart. Gene Ther.12(11), 936–941 (2005).
  • Howard CM , ForsbergF, MinimoC, LiuJB, MertonDA, ClaudioPP. Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents. J. Cell. Physiol.209(2), 413–421 (2006).
  • Guo Z , HongS, JinX, LuoQ, WangZ, WangY. Study on the multidrug resistance 1 gene transfection efficiency using adenovirus vector enhanced by ultrasonic microbubbles in vitro. Mol. Biotechnol.48(2), 138–146 (2011).
  • Alter J , SennogaCA, LopesDM, EckersleyRJ, WellsDJ. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol,35(6), 976–984 (2009).
  • Muller OJ , SchinkelS, KleinschmidtJA, KatusHA, BekeredjianR. Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther.15(23), 1558–1565 (2008).
  • Bekeredjian R , ChenS, PanW, GrayburnPA, ShohetRV. Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med. Biol.30(4), 539–543 (2004).
  • Chen S , KrollMH, ShohetRV, FrenkelP, MayerSA, GrayburnPA. Bioeffects of myocardial contrast microbubble destruction by echocardiography. Echocardiography19(6), 495–500 (2002).
  • Martin KR , KleinRL, QuigleyHA. Gene delivery to the eye using adeno-associated viral vectors. Methods28(2), 267–275 (2002).
  • Negrete A , KotinRM. Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology. Brief Funct. Genomic Proteomic7(4), 303–311 (2008).
  • Touchard E , KowalczukL, BloquelC, NaudMC, BigeyP, Behar-CohenF. The ciliary smooth muscle electrotransfer: basic principles and potential for sustained intraocular production of therapeutic proteins. J. Gene Med.12(11), 904–919 (2010).
  • Xie W , LiuS, SuH, WangZ, ZhengY, FuY. Ultrasound microbubbles enhance recombinant adeno-associated virus vector delivery to retinal ganglion cells in vivo. Acad. Radiol.17(10), 1242–1248 (2010).
  • Levin LA , SchlampCL, SpieldochRL, GeszvainKM, NickellsRW. Identification of the bcl-2 family of genes in the rat retina. Invest. Ophthalmol. Vis. Sci.38(12), 2545–2553 (1997).
  • Dang SP , WangRX, QinMDet al. A novel transfection method for eukaryotic cells using polyethylenimine coated albumin microbubbles. Plasmid 66(1), 19–25 (2011).
  • Deshpande MC , PrausnitzMR. Synergistic effect of ultrasound and PEI on DNA transfection in vitro. J. Control. Release118(1), 126–135 (2007).
  • Qiu Y , LuoY, ZhangYet al. The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro. J. Control. Release 145(1), 40–48 (2010).
  • Chen ZY , LiangK, QiuRX. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. J. Exp. Clin. Cancer Res.29, 152 (2010).
  • Lu QL , LiangHD, PartridgeT, BlomleyMJ. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther.10(5), 396–405 (2003).
  • Xenariou S , GriesenbachU, LiangHDet al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther. 14(9), 768–774 (2007).
  • ter Haar G , ShawA, PyeSet al. Guidance on reporting ultrasound exposure conditions for bio-effects studies. Ultrasound Med. Biol. 37(2), 177–183 (2011).
  • Pichon C , BillietL, MidouxP. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr. Opin. Biotechnol.21(5), 640–645 (2010).
  • Harraghy N , GaussinA, MermodN. Sustained transgene expression using MAR elements. Curr. Gene Ther.8(5), 353–366 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.