303
Views
0
CrossRef citations to date
0
Altmetric
News & Analysis

Research Spotlight: Shining Light on nuclear-targeted Therapy Using Gold Nanostar Constructs

, , &
Pages 1263-1267 | Published online: 23 Nov 2012

References

  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2, 751–760 (2007).
  • Kim BY , RutkaJT, ChanWC. Nanomedicine. New Engl. J. Med.363, 2434–2443 (2010).
  • Adams GP , WeinerLM. Monoclonal antibody therapy of cancer. Nat. Biotechnol.23, 1147–1157 (2005).
  • Wu AM , SenterPD. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol.23, 1137–1146 (2005).
  • McLaughlin P , Grillo-LópezAJ, LinkBKet al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998).
  • Baselga J , NortonL, AlbanellJ, KimYM, MendelsohnJ. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res.59, 2020–2020 (1999).
  • Fulda S , GalluzziL, KroemerG. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov.9, 447–464 (2010).
  • Hockenbery DM . Targeting mitochondria for cancer therapy. Environ. Mol. Mutagen.51, 476–489 (2010).
  • Kroemer G , GalluzziL, BrennerC. Mitochondrial membrane permeabilization in cell death. Physiol. Rev.87, 99–163 (2007).
  • Schwartz GK , ShahMA. Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol.23, 9408–9421 (2005).
  • Faustino RS , NelsonTJ, TerzicA, Perez-TerzicC. Nuclear transport: target for therapy. Clin. Pharmacol. Ther.81, 880–886 (2007).
  • Wang AZ , LangerR, FarokhzadOC. Nanoparticle delivery of cancer drugs. Annu. Rev. Med.63, 185–198 (2012).
  • Rosi NL , GiljohannDA, ThaxtonCS, Lytton-JeanAKR, HanMS, MirkinCA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science312, 1027–1030 (2006).
  • Cho K , WangX, NieS, ChenZG, ShinDM. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res.14, 1310–1316 (2008).
  • Austin LA , KangB, YenCW, El-SayedMA. Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconj. Chem.22, 2324–2331 (2011).
  • Kang B , MackeyMA, El-SayedMA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc.132, 1517–1519 (2010).
  • Pan LM , HeQ, LiuJet al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 5722–5725 (2012).
  • de la Fuente JM , BerryCC. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconj. Chem.16, 1176–1180 (2005).
  • Ming X , FengL. Targeted delivery of a splice-switching oligonucleotide by cationic polyplexes of RGD-oligonucleotide conjugate. Mol. Pharm.9, 1502–1510 (2012).
  • Prabha S , LabhasetwarV. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol. Pharm.1, 211–219 (2004).
  • Symens N , WalczakR, DemeesterJ, MattajI, De Smedt SC, Remaut K. Nuclear inclusion of nontargeted and chromatin-targeted polystyrene beads and plasmid DNA containing nanoparticles. Mol. Pharm.8, 1757–1766 (2011).
  • Zhou ZX , ShenY, TangJet al. Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. J. Mater. Chem. 21, 19114–19123 (2011).
  • Stuart RK , Stockerl-GoldsteinK, CooperMet al. Randomized Phase II trial of the nucleolin targeting aptamer AS1411 combined with high-dose cytarabine in relapsed/refractory acute myeloid leukemia (AML). J. Clin. Oncol. 27, 15s (2009).
  • Miller DM , TaftBS, KloeckerGH, BatesPJ, TrentJO, MillerDM. Extended Phase I study of AS1411 in renal and non-small cell lung cancers. Ann. Oncol.17, 147–148 (2006).
  • Bates PJ , LaberDA, MillerDM, ThomasSD, TrentJO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol.86, 151–164 (2009).
  • Christian S , PilchJ, AkermanME, PorkkaK, LaakkonenP, RuoslahtiE. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol.163, 871–878 (2003).
  • Soundararajan S , WangL, SridharanVet al. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4–11 leukemia cells. Mol. Pharmacol. 76, 984–991 (2009).
  • Dam DH , LeeJH, SiscoPNet al. Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano. 6, 3318–3326 (2012).
  • Sibbett W , LagatskyAA, BrownCTA. The development and application of femtosecond laser systems. Opt. Express20, 6989–7001 (2012).
  • Barhoumi A , HuschkaR, BardhanR, KnightMW, HalasNJ. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem. Phys. Lett.482, 171–179 (2009).
  • Huschka R , NeumannO, BarhoumiA, HalasNJ. Visualizing light-triggered release of molecules inside living cells. Nano. Lett.10, 4117–4122 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.