361
Views
0
CrossRef citations to date
0
Altmetric
Review

Hydroxyapatite Nanoparticles As Vectors for Gene Delivery

, , , &
Pages 623-632 | Published online: 17 May 2012

References

  • Gorecki DC . Prospects and problems of gene therapy: an update. Exp. Opin. Emerg. Drugs6(2), 187–198 (2001).
  • Edelstein ML , AbediMR, WixonJ. Gene therapy clinical trials worldwide to 2007 – an update. J. Gene Med.9(10), 833–842 (2007).
  • Nishikawa M , HuangL. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther.12(8), 861–870 (2001).
  • Bisht S , BhaktaG, MitraS, MaitraA. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int. J. Pharm.288(1), 157–168 (2005).
  • Khosravi-Darani K , MozafariMR, RashidiL, MohammadiM. Calcium based non-viral gene delivery: an overview of methodology and applications. Acta Med. Iran.48(3), 133–141 (2010).
  • Kumta PN , SfeirC, Lee D-H, Olton D, Choi D. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater.1(1), 65–83 (2005).
  • Douglas KL . Toward development of artificial viruses for gene therapy: a comparative evaluation of viral and non-viral transfection. Biotechnol. Prog.24(4), 871–883 (2008).
  • Ditto AJ , ShahPN, GumpLR, YunYH. Nanospheres formulated from L-tyrosine polyphosphate exhibiting sustained release of polyplexes and in vitro controlled transfection properties. Mol. Pharm.6(3), 986–995 (2009).
  • Liu T , TangA, ZhangGet al. Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy. Cancer Biother. Radiopharm. 20(2), 141–149 (2005).
  • Yang J -P, Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther.4, 950–960 (1997).
  • Morille M , PassiraniC, VonarbourgA, ClavreulA, BenoitJP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials29(24–25), 3477–3496 (2008).
  • Liu F , HuangL. Development of non-viral vectors for systemic gene delivery. J. Control. Release78(1–3), 259–266 (2002).
  • Dang JM , LeongKW. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev.58(4), 487–499 (2006).
  • Lee KY . Chitosan and its derivatives for gene delivery. Macromol. Res.15(3), 195–201 (2007).
  • Kim TH , JiangHL, JereDet al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci. 32(7), 726–753 (2007).
  • Lacerda L , RaffaS, PratoM, BiancoA, KostarelosK. Cell-penetrating CNTs for delivery of therapeutics. Nano Today2(6), 38–43 (2007).
  • Maitra A . Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Exp. Rev. Mol. Diagnos.5(6), 893–905 (2005).
  • Zhu SH , HuangBY, ZhouKCet al. Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanopart. Res. 6(2–3), 307–311 (2004).
  • Haberland A , KnausT, ZaitsevSVet al. Calcium ions as efficient cofactor of polycation-mediated gene transfer. Biochim. Biophys. Acta Gene Struct. Express. 1445(1), 21–30 (1999).
  • Truong-Le VL , WalshSM, SchweibertEet al. Gene transfer by DNA-gelatin nanospheres. Arch. Biochem. Biophys. 361(1), 47–56 (1999).
  • Lee MA , DunnRC, ClaphamDE, Stehno-BittelL. Calcium regulation of nuclear pore permeability. Cell Calcium23(2–3), 91–101 (1998).
  • Puvvada N , PanigrahiPK, PathakA. Room temperature synthesis of highly hemocompatible hydroxyapatite, study of their physical properties and spectroscopic correlation of particle size. Nanoscale2(12), 2631–2638 (2010).
  • Rohanizadeh R , Trecant-VianaM, DaculsiG. Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic: influence of the implantation site. Calcif. Tissue Int.64(5), 430–436 (1999).
  • Rohanizadeh R , ChungK. Hydroxyapatite as a carrier for bone morphogenetic protein. J. Oral Implantol.37(6), 659–672 (2011).
  • Rohanizadeh R , PadrinesM, BoulerJM, CouchourelD, FortunY, DaculsiG. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. J. Biomed. Mater. Res.42(4), 530–539 (1998).
  • Kumar R , PrakashKH, CheangP, KhorKA. Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir20(13), 5196–5200 (2004).
  • Han Y , WangX, LiS. A simple route to prepare stable hydroxyapatite nanoparticles suspension. J. Nanopart. Rese.11(5), 1235–1240 (2009).
  • Zhu SH , HuangBY, ZhouKCet al. Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanopart. Res. 6(2), 307–311 (2004).
  • Uskokovic V , UskokovicDP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. Part B Appl. Biomater.96(1), 152–191 (2011).
  • Motskin M , WrightDM, MullerKet al. Hydroxyapatite nano and microparticles. Correlation of particle properties with cytotoxicity and biostability. Biomaterials 30(19), 3307–3317 (2009).
  • Cai Y , LiuY, YanWet al. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 17(36), 3780–3787 (2007).
  • Brigger I , DubernetC, CouvreurP. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev.54(5), 631–651 (2002).
  • Tousignant JD , GatesAL, IngramLAet al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid. Plasmid DNA complexes in mice. Hum. Gene Ther. 11(18), 2493–2513 (2000).
  • Chen L , MccrateJM, Lee JC-M, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnol.22(10), 105708 (2011).
  • Gratton SEA , RoppPA, PohlhausPDet al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105(33), 11613–11618 (2008).
  • Daculsi G , BoulerJM, LegerosRZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol.172, 129–191 (1997).
  • Zhao Y , ZhangY, NingF, GuoD, XuZ. Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J. Biomed. Mater. Res. Part B Appl. Biomater.83(1), 121–126 (2007).
  • Zhang Y , LuJ. A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J. Nanopart. Res.9(4), 589–594 (2007).
  • Padilla S , Izquierdo-BarbaI, Vallet-RegíM. High specific surface area in nanometric carbonated hydroxyapatite. Chem. Mater.20(19), 5942–5944 (2008).
  • Pramanik N , TarafdarA, PramanikP. Capping agent-assisted synthesis of nanosized hydroxyapatite: comparative studies of their physicochemical properties. J. Mater. Process. Technol.184(1–3), 131–138 (2007).
  • Shi Z , HuangX, CaiY, TangR, YangD. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater.5(1), 338–345 (2009).
  • Bose S , SahaSK. Synthesis and Characterization of hydroxyapatite nanopowders by emulsion technique. Chem. Mater.15(23), 4464–4469 (2003).
  • Li H , ZhuM, LiL, ZhouC. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. J. Mater. Sci.43(1), 384–389 (2008).
  • Sun Y , GuoG, TaoD, WangZ. Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J. Physics Chem. Solids68(3), 373–377 (2007).
  • Dasgupta S , BandyopadhyayA, BoseS. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomater.5(8), 3112–3121 (2009).
  • Gonzalez-Mcquire R , Chane-Ching J-Y, Vignaud E, Lebugle A, Mann S. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J. Mater. Chem.14(14), 2277–2281 (2004).
  • Rohanizadeh R , LegerosRZ, HarsonoM, BendavidA. Adherent apatite coating on titanium substrate using chemical deposition. J. Biomed. Mater. Res. A72(4), 428–438 (2005).
  • Zavgorodniy AV , Borrero-LopezO, HoffmanM, LegerosRZ, RohanizadehR. Mechanical stability of two-step chemically deposited hydroxyapatite coating on Ti substrate: effects of various surface pretreatments. J. Biomed. Mater. Res. B Appl. Biomater.99(1), 58–69 (2011).
  • Zavgorodniy AV , Borrero-LopezO, HoffmanM, LegerosRZ, RohanizadehR. Characterization of the chemically deposited hydroxyapatite coating on a titanium substrate. J. Mater. Sci. Mater. Med.22(1), 1–9 (2011).
  • Chu CL , LinPH, DongYS, GuoDY. Influences of citric acid as a chelating reagent on the characteristics of nanophase hydroxyapatite powders fabricated by a sol-gel method. J. Mater. Sci. Lett.21(22), 1793–1795 (2002).
  • Liu J , LiK, WangH, ZhuM, XuH, YanH. Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology16(1), 82–87 (2005).
  • Uota M , ArakawaH, KitamuraN, YoshimuraT, TanakaJ, KijimaT. Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach. Langmuir21(10), 4724–4728 (2005).
  • Morgan TT , MuddanaHS, AltinogluEIet al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 8(12), 4108–4115 (2008).
  • Zhang MM , ZhaiH, LiuH, LiuJ, HanX, HeW. A novel mixed hydroxide method for hydroxyapatite preparation. Adv. Mater. Res.152–153, 1399–1403 (2011).
  • Chow LC , SunL, HockeyB. Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J. Res. Natl Inst. Stand. Technol.109(6), 543–551 (2004).
  • Kandori K , KurodaT, TogashiS, KatayamaE. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption. J. Phys. Chem. B115(4), 653–659 (2011).
  • Han YC , WangXY, LiSP. A simple route to prepare stable hydroxyapatite nanoparticles suspension. J. Nanopart. Res.11(5), 1235–1240 (2009).
  • Alatorre-Meda M , TaboadaP, SabinJ, KrajewskaB, VarelaLM, RodriguezJR. DNA-chitosan complexation: a dynamic light scattering study. Coll. Surf. A Physicochem. Eng. Aspects339(1–3), 145–152 (2009).
  • Sokolova VV , RadtkeI, HeumannR, EppleM. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials27(16), 3147–3153 (2006).
  • Wang F , LiMS, LuYP, QiYX. A simple sol-gel technique for preparing hydroxyapatite nanopowders. Mater. Lett.59(8–9), 916–919 (2005).
  • Gopi D , GovindarajuKM, Victor Ca, Kavitha L, Rajendiran N. Spectroscopic investigations of nanohydroxyapatite powders synthesized by conventional and ultrasonic coupled sol-gel routes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.70(5), 1243–1245 (2008).
  • Kim IS , KumtaPN. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater. Sci. Eng. B Solid State Mater. Adv. Technol.111(2–3), 232–236 (2004).
  • Muddana HS , MorganTT, AdairJH, ButlerPJ. Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett.9(4), 1559–1566 (2009).
  • Kester M , HeakalY, FoxTet al. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 8(12), 4116–4121 (2008).
  • Wang A , LiuD, YinHet al. Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater. Sci. Eng. C 27(4), 865–869 (2007).
  • Yan L , LiY, Deng Z-X, Zhuang J, Sun X. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater.3(7), 633–637 (2001).
  • Earl JS , WoodDJ, MilneSJ. Hydrothermal synthesis of hydroxyapatite. J. Phys. Confer. Ser.26(1), 268–271 (2006).
  • Yang Q , Wang J-X, Shao L et al. High throughput methodology for continuous preparation of hydroxyapatite nanoparticles in a microporous tube-in-tube microchannel reactor. Ind. Eng. Chem. Res.49(1), 140–147 (2009).
  • Lee WH , ZavgorodniyAV, LooCY, RohanizadehR. Synthesis and characterization of hydroxyapatite with different crystallinity: effects on protein adsorption and release. J. Biomed. Mater. Res. Part A doi:10.1002/jbm.a.34093 (2012) (Epub ahead of print).
  • Bhattarai SR , KimSY, JangKYet al. Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. J. Virol. Methods 147(2), 213–218 (2008).
  • Lee CM , ParkJW, KimJ, KimDW, JeongHJ, LeeKY. Influence of histidine on the release of all-trans retinoic acid from self-assembled glycol chitosan nanoparticles. Drug Dev. Ind. Pharm.36(7), 781–786 (2010).
  • Wang P , LiC, GongH, JiangX, WangH, LiK. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol.203(2), 315–321 (2010).
  • Lee WH , LooCY, VanKL, ZavgorodniyAV, RohanizadehR. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments. J. R. Soc. Interface9(70), 918–927 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.