207
Views
5
CrossRef citations to date
0
Altmetric
Review

Polymer-based Oral Peptide Nanomedicines

, &
Pages 657-668 | Published online: 17 May 2012

References

  • Walsh G . Biopharmaceutical benchmarks 2006. Nat. Biotechnol.24(7), 769–776 (2006).
  • Johnson-Leger C , PowerCA, ShomadeG, ShawJP, El Proudfoot EI. Protein therapeutics – lessons learned and a view of the future. Exp. Opin. Biol. Ther.6(1), 1–7 (2006).
  • Degim IT , CelebiN. Controlled delivery of peptides and proteins. Curr. Pharm. Des.13(1), 99–117 (2007).
  • Reichert J . Development trends for peptide therapeutics: a comprehensive quantitative analysis of peptide therapeutics in clinical development. In: Peptide Therapeutics Foundation. Peptide Therapeutics Foundation, Macmillan Publishers, London, UK (2010).
  • Adessi C , SotoC. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem.9(9), 963–978 (2002).
  • Shaji J , PatoleV. Protein and peptide drug delivery: oral approaches. Ind. J. Pharm. Sci.70(3), 269–277 (2008).
  • Hoffman A , ZivE. Pharmacokinetic considerations of new insulin formulations and routes of administration. Clin. Pharm.33(4), 285–301 (1997).
  • Bernkop-Schnurch A , WalkerG. Multifunctional matrices for oral peptide delivery. Crit. Rev. Ther. Drug Carr. Syst.18(5), 459–501 (2001).
  • Gabor F , BognerE, WeissenboeckA, WirthM. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv. Drug Deliv. Rev.56(4), 459–480 (2004).
  • Lee VHL , TraverRD, TaubME. Enzymatic barriers to peptide and protein drug delivery. In: Peptide and Protein Drug Delivery. Lee VHL (Ed.). Marcel Dekker Inc., NY, USA (1991).
  • Woodley JF . Enzymatic barriers for GI peptide and protein delivery. Crit. Rev. Ther. Drug Carr. Syst.11(2–3), 61–95 (1994).
  • Salama NN , EddingtonND, FasanoA. Tight junction modulation and its relationship to drug delivery. Adv. Drug Deliv. Rev.58(1), 15–28 (2006).
  • Ward PD , TippinTK, ThakkerDR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm. Sci. Technol. Today3(10), 346–358 (2000).
  • Borges O , Cordeiro-da-SilvaA, RomeijnSGet al. Uptake studies in rat Peyer‘s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J. Control. Release 114(3), 348–358 (2006).
  • Wu ZH , PingQN, WeiY, LaiJM. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharm. Sin.25(7), 966–972 (2004).
  • Adams G , WangN, CuiY. Future alternative therapies in a quest to halt aberrations in diabetes mellitus. Biomed. Pharm.59(6), 296–301 (2005).
  • Rubio-Aliaga I , DanielH. Mammalian peptide transporters as targets for drug delivery. Trends Pharm. Sci.23(9), 434–440 (2002).
  • Maher S , FeigheryL, BraydenD, McCleanSN. Melittin as a permeability enhancer II: in vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae. Pharm. Res.24(7), 1346–1356 (2007).
  • Maher S , DevocelleM, RyanSA, McCleanSN, BraydenDJ. Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin. Int. J. Pharm.387(1–2), 154–160 (2010).
  • Kamei N , MorishitaM, KanayamaYet al. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography. J. Control. Release 146(1), 16–22 (2010).
  • Kamei N , MorishitaM, TakayamaK. Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J. Control. Release136(3), 179–186 (2009).
  • Duncan R . Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6(9), 688–701 (2006).
  • Kahns AH , BuurA, BundgaardH. Prodrugs of peptides. Synthesis and evaluation of various esters of desmopressin (dDAVP). Pharm. Res.10(1), 68–74 (1993).
  • Uchiyama T , KotaniA, TatsumiHet al. Development of novel lipophilic derivatives of DADLE (leucine enkephalin analogue): intestinal permeability characteristics of DADLE derivatives in rats. Pharm. Res. 17(12), 1461–1467 (2000).
  • Asada H , DouenT, MizokoshiYet al. Stability of acyl derivatives of insulin in the small intestine: relative importance of insulin association characteristics in aqueous solution. Pharm. Res. 11(8), 1115–1120 (1994).
  • Swaan PW . Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm. Res.15(6), 826–834 (1998).
  • Oh DM , HanHK, AmidonGL. Drug transport and targeting. Intestinal transport. Pharm. Biotechnol.12, 59–88 (1999).
  • Pauletti GM , GangwarS, KnippGTet al. Structural requirements for intestinal absorption of peptide drugs. J. Control. Release 41(1–2), 3–17 (1996).
  • Desai MP , LabhasetwarV, WalterE, LevyRJ, AmidonGL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res.14(11), 1568–1573 (1997).
  • Koziara JM , LockmanPR, AllenDD, MumperRJ. In situ blood–brain barrier transport of nanoparticles. Pharm. Res.20(11), 1772–1778 (2003).
  • Vila A , SanchezA, TobioM, CalvoP, AlonsoMJ. Design of biodegradable particles for protein delivery. J. Control. Release78(1–3), 15–24 (2002).
  • Tobío M , SánchezA, VilaAet al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG–PLA nanoparticles following oral administration. Coll. Surf. B Biointerfaces 18(3–4), 315–323 (2000).
  • Gao H , WangYN, FanYG, MaJB. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-cyclodextrin and its properties as the new carrier of protein delivery system. J. Control. Release107(1), 158–173 (2005).
  • Carino GP , JacobJS, MathiowitzE. Nanosphere based oral insulin delivery. J. Control. Release65(1–2), 261–269 (2000).
  • Cui FD , TaoAJ, CunDM, ZhangLQ, ShiK. Preparation of insulin loaded PLGA–Hp55 nanoparticles for oral delivery. J. Pharm. Sci.96(2), 421–427 (2007).
  • Gutierro I , HernandezRM, IgartuaM, GasconAR, PedrazJL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine21(1–2), 67–77 (2002).
  • Satheesh Kumar P , RamakrishnaS, Ram Saini T, Diwan PV. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Die Pharmazie Int. J. Pharm. Sci.61(7), 613–617 (2006).
  • Yoo HS , ParkTG. Biodegradable nanoparticles containing protein–fatty acid complexes for oral delivery of salmon calcitonin. J. Pharm. Sci.93(2), 488–495 (2004).
  • Kawashima Y , YamamotoH, TakeuchiH, KunoY. Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm. Dev. Technol.5(1), 77–85 (2000).
  • Damgé C , SochaM, UbrichN, MaincentP. Poly(ε-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J. Pharm. Sci.99(2), 879–889 (2010).
  • Damgé C , MaincentP, UbrichN. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release117(2), 163–170 (2007).
  • Cui F , QianF, ZhaoZ, YinL, TangC, YinC. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules10(5), 1253–1258 (2009).
  • Sajeesh S , SharmaCP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm.325(1–2), 147–154 (2006).
  • Torres-Lugo M , PeppasNA. Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications. J. Nanopart. Res.4(1), 73–81 (2002).
  • Vauthier C , DubernetC, FattalE, Pinto-AlphandaryH, CouvreurP. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev.55(4), 519–548 (2003).
  • Damgé C , CouvreurP. A new approach for oral administration of insulin using polyalkylcyanoacrylate nanocapsules as a drug carrier. Diabetes37(2), 246–251 (1988).
  • Lowe PJ , TempleCS. Calcitonin and Insulin in Isobutylcyanoacrylate Nanocapsules: Protection Against Proteases and Effect on Intestinal Absorption in Rats. Blackwell Publishing Ltd, London, UK, 547–552 (1994).
  • Damgé C , VonderscherJ, MarbachP, PingetM. Poly(alkyl cyanoacrylate) nanocapsules as a delivery system in the rat for octreotide, a long-acting somatostatin analogue. J. Pharm. Pharmacol.49(10), 949–954 (1997).
  • Graf A , RadesT, HookSM. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation. Eur. J. Pharm. Sci.37(1), 53–61 (2009).
  • Mesiha MS , SidhomMB, FasipeB. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int. J. Pharm.288(2), 289–293 (2005).
  • des Rieux A , FievezV, GarinotM, Schneider Y-J, Preat VR. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release116(1), 1–27 (2006).
  • Krause HJ , SchwarzA, RohdewaldP. Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs. Int. J. Pharm.27(2–3), 145–155 (1985).
  • Fonseca C , SimoesSR, GasparRR. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release83(2), 273–286 (2002).
  • Lemoine D , PreatV. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J. Control. Release54(1), 15–27 (1998).
  • Leo E , BrinaB, ForniF, VandelliMA. In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int. J. Pharm.278(1), 133–141 (2004).
  • Dillen K , VandervoortJ, Van den Mooter G, Verheyden L, Ludwig A. Factorial design, physicochemical characterisation and activity of ciprofloxacin–PLGA nanoparticles. Int. J. Pharm.275(1–2), 171–187 (2004).
  • Langer RS , PeppasNA. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials2(4), 201–214 (1981).
  • Zambaux MF , BonneauxF, GrefR, DellacherieE, VigneronC. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release60(2–3), 179–188 (1999).
  • Galindo-Rodriguez SA , AllemannE, FessiH, DoelkerE. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. 22(5), 419–464 (2005).
  • Alonso-Sande MA , CunaM, Remunan-LopezC, Teijeiro-OsorioDE, Alonso-LebreroJL, AlonsoMAJ. Formation of new glucomannan-chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules39(12), 4152–4158 (2006).
  • Calvo P , Remunan-LopezC, Vila-JatoJL, AlonsoMAJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res.14(10), 1431–1436 (1997).
  • Calvo P , Remuñán-LópezC, Vila-JatoJL, AlonsoMJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci.63(1), 125–132 (1997).
  • Balthasar S , MichaelisK, DinauerN, von Briesen H, Kreuter JR, Langer K. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials26(15), 2723–2732 (2005).
  • Reis CP , RibeiroAJ, HoungS, VeigaF, NeufeldRJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur. J. Pharm. Sci.30(5), 392–397 (2007).
  • Reis CP , VeigaFJ, RibeiroAJ, NeufeldRJ, DamgéC. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J. Pharm. Sci.97(12), 5290–5305 (2008).
  • Chalasani KB , Russell-JonesGJ, JainAK, DiwanPV, JainSK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J. Control. Release122(2), 141–150 (2007).
  • Parajó Y , D´AngeloI, WelleA, Garcia-FuentesM, AlonsoMJ. Hyaluronic acid/chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv.17(8), 596–604 (2010).
  • Trapani A , LopedotaA, FrancoMet al. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur. J. Pharm. Biopharm. 75(1), 26–32 (2010).
  • Bernkop-Schnurch A , KraulandAH, LeitnerVM, PalmbergerT. Thiomers: potential excipients for non-invasive peptide delivery systems. Eur. J. Pharm. Biopharm.58(2), 253–263 (2004).
  • Deutel B , GreindlM, ThaurerM, Bernkop-SchnuerchA. Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug delivery system. Biomacromolecules9(1), 278–285 (2008).
  • Roldo M , HornofM, CalicetiP, Bernkop-SchnurchA. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm.57(1), 115–121 (2004).
  • Woitiski CB , NeufeldRJ, RibeiroANJ, VeigaF. Colloidal carrier integrating biomaterials for oral insulin delivery: influence of component formulation on physicochemical and biological parameters. Acta Biomater.5(7), 2475–2484 (2009).
  • Chalasani KB , Russell-JonesGJ, YandrapuSK, DiwanPV, JainSK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release117(3), 421–429 (2007).
  • Reis CP , RibeiroAJ, VeigaF, NeufeldRJ, DamgéC. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug Deliv.15(2), 127–139 (2008).
  • Pinto Reis C , NeufeldRJ, RibeiroAJ, VeigaF. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomed. Nanotechnol. Biol. Med.2(2), 53–65 (2006).
  • Woitiski CB , NeufeldRJ, VeigaF, CarvalhoRA, FigueiredoIV. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur. J. Pharm. Sci.41(3–4), 556–563 (2010).
  • Florence AT . Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov. Today Technol.2(1), 75–81 (2005).
  • Sarmento B , RibeiroA, VeigaF, FerreiraD, NeufeldR. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules8(10), 3054–3060 (2007).
  • Sarmento B , RibeiroA, VeigaF, FerreiraD. Development and characterization of new insulin containing polysaccharide nanoparticles. Coll. Surf. B Biointerfaces53(2), 193–202 (2006).
  • Sarmento B , RibeiroA, VeigaF, SampaioP, NeufeldR, FerreiraD. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res.24(12), 2198–2206 (2007).
  • Sonaje K , Chen Y-J, Chen H-L et al. Enteric-coated capsules filled with freeze–dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials31(12), 3384–3394 (2010).
  • Sonaje K , Lin K-J, Wang J-J et al. Self-assembled pH-sensitive nanoparticles: a platform for oral delivery of protein drugs. Adv. Func. Mater.20(21), 3695–3700 (2010).
  • Sonaje K , Lin K-J, Wey S-P et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs subcutaneous injection. Biomaterials31(26), 6849–6858 (2010).
  • Lin Y -H, Mi F-L, Chen C-T et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules8(1), 146–152 (2007).
  • Shu S , ZhangX, TengD, WangZ, LiC. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly (L-aspartic acid)-polyethylene glycol for controlled protein release. Carbohyd. Res.344(10), 1197–1204 (2009).
  • Makhlof A , TozukaY, TakeuchiH. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci.42(5), 445–451 (2011).
  • Goycoolea FM , LolloG, Remunan-LopezC, QuagliaF, AlonsoMJ. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules10(7), 1736–1743 (2009).
  • Krauland AH , AlonsoMJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharm.340(1–2), 134–142 (2007).
  • Zhang N , LiJ, JiangWet al. Effective protection and controlled release of insulin by cationic-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm. 393(1–2), 213–219 (2010).
  • Prego C , FabreM, TorresD, AlonsoMJ. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm. Res.23(3), 549–556 (2006).
  • Azevedo J , SizilioR, BritoMet al. Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J. Therm. Anal. Calorim. 106(3), 685–689 (2011).
  • Avadi MR , SadeghiAMM, MohammadpourNet al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomed. Nanotechnol. Biol. Med. 6(1), 58–63 (2010).
  • Garcia-Fuentes M , TorresD, AlonsoMJ. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int. J. Pharm.296(1–2), 122–132 (2005).
  • Garcia-Fuentes M , PregoC, TorresD, AlonsoMJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur. J. Pharm. Sci.25(1), 133–143 (2005).
  • Prego C , GarciaM, TorresD, AlonsoMJ. Transmucosal macromolecular drug delivery. J. Control. Release101(1–3), 151–162 (2005).
  • Prego C , TorresD, AlonsoMJ. Chitosan nanocapsules as carriers for oral peptide delivery: effect of chitosan molecular weight and type of salt on the in vitro behaviour and in vivo effectiveness. J. Nanosci. Nanotechnol.6(9–10), 2921–2928 (2006).
  • Vasir JK , TambwekarK, GargS. Bioadhesive microspheres as a controlled drug delivery system. Int. J. Pharm.255(1–2), 13–32 (2003).
  • Gref R , QuellecP, SanchezA, CalvoP, DellacherieE, AlonsoMJ. Development and characterization of CyA-loaded poly(lactic acid):poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Eur. J. Pharm. Biopharm.51(2), 111–118 (2001).
  • Belchetz P , HammondP. Mosby´s Colour Atlas and Text of Diabetes and Endocrinology. Elsevier Ltd, Burgos, Spain (2004).
  • Wong TW . Design of oral insulin delivery systems. J. Drug Target.18(2), 79–92 (2010).
  • Gupta A , JhaKK, AroraR. Insulin durg delivery: strategies and technologies. Pharm. Res.4, 154–168 (2010).
  • Sabetsky V , EkblomJ. Insulin: a new era for an old hormone. Pharm. Res.61(1), 1–4 (2010).
  • Thomas F . Advances in insulin delivery systems and devices: beyond the vial and syringe. Insulin1(3), 99–108 (2006).
  • Peppas NA , KavimandanNJ. Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur. J. Pharm. Sci.29(3–4), 183–197 (2006).
  • Morishita M , GotoT, NakamuraK, LowmanAM, TakayamaK, PeppasNA. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J. Control. Release110(3), 587–594 (2006).
  • Liu H , TangR, PanWS, ZhangY. Potential utility of various protease inhibitors for improving the intestinal absorption of insulin in rats. J. Pharm. Pharmacol.55(11), 1523–1529 (2003).
  • Agarwal V , ReddyIK, KhanMA. Oral delivery of proteins: effect of chicken and duck ovomucoid on the stability of insulin in the presence of α-chymotrypsin and trypsin. Pharm. Pharmacol. Commun.6(5), 223–227 (2000).
  • Shah RB , AhsanF, KhanMA. Oral delivery of proteins: progress and prognostication. Crit. Rev. Ther. Drug Carrier Syst.19(2), 135–169 (2002).
  • Li CL , DengYJ. Oil-based formulations for oral delivery of insulin. J. Pharm. Pharmacol.56(9), 1101–1107 (2004).
  • Cox DS , RajeS, GaoHL, SalamaNN, EddingtonND. Enhanced permeability of molecular weight markers and poorly bioavailable compounds across Caco-2 cell monolayers using the absorption enhancer, zonula occludens toxin. Pharm. Res.19(11), 1680–1688 (2002).
  • Karyekar CS , FasanoA, RajeS, LuR, DowlingTC, EddingtonND. Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J. Pharm. Sci.92(2), 414–423 (2003).
  • Eaimtrakarn S , PrasadYVR, OhnoTet al. Absorption enhancing effect of Labrasol on the intestinal absorption of insulin in rats. J. Drug Target. 10(3), 255–260 (2002).
  • Kapitza C , ZijlstraE, HeinemannL, CastelliMC, RileyG, HeiseT. Oral insulin: a comparison with subcutaneous regular human insulin in patients with type 2 diabetes. Diabetes Care33(6), 1288–1290 (2010).
  • Kamei N , MorishitaM, EdaY, IdaN, NishioR, TakayamaK. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J. Control. Release132(1), 21–25 (2008).
  • Clement S , DandonaP, StillJG, KosuticG. Oral modified insulin (HIM2) in patients with type 1 diabetes mellitus: results from a phase I/II clinical trial. Metabolism53(1), 54–58 (2004).
  • Hazra P , AdhikaryL, DaveNet al. Development of a process to manufacture PEGylated orally bioavailable insulin. Biotechnol. Prog. 26(6), 1695–1704 (2010).
  • Petrus AK , AllisDG, SmithRP, FairchildTJ, DoyleRP. Exploring the implications of vitamin B12 conjugation to insulin on insulin receptor binding. ChemMedChem4(3), 421–426 (2009).
  • Wood KM , StoneG, PeppasNA. Lectin functionalized complexation hydrogels for oral protein delivery. J. Control. Release116(2), 66–68 (2006).
  • Makhlof A , WerleM, TozukaY, TakeuchiH. A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J. Control. Release149(1), 81–88 (2011).
  • Geho WB , GehoHC, LauJR, GanaTJ. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. Diabetes Technol. Soc.3(6), 1451–1459 (2009).
  • Woitiski CB , CarvalhoRA, RibeiroAJ, NeufeldRJ, VeigaF. Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. BioDrugs22(4), 223–237 (2008).
  • Li M -G, Lu W-L, Wang H-C et al. Distribution, transition, adhesion and release of insulin loaded nanoparticles in the gut of rats. Int. J. Pharm.329(1–2), 182–191 (2007).
  • Davaran S , OmidiY, RashidiMRet al. Preparation and in vitro evaluation of linear and star-branched PLGA nanoparticles for insulin delivery. J. Bioact. Compat. Polym. 23(2), 115–131 (2008).
  • Xiong XY , LiYP, LiZLet al. Vesicles from pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release 120(1–2), 11–17 (2007).
  • Pan Y , LiYJ, ZhaoHYet al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249(1–2), 139–147 (2002).
  • Prego C , TorresD, AlonsoMJ. The potential of chitosan for the oral administration of peptides. Exp. Opin. Drug Deliv.2(5), 843–854 (2005).
  • Csaba N , Garcia-FuentesM, AlonsoMJ. The performance of nanocarriers for transmucosal drug delivery. Exp. Opin. Drug Deliv.3(4), 463–478 (2006).
  • de la Fuente M , CsabaN, Garcia-FuentesM, AlonsoMJ. Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine3(6), 845–857 (2008).
  • Krauland AH , GuggiD, Bernkop-SchnurchA. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J. Control. Release95(3), 547–555 (2004).
  • Bernkop-Schnurch A . Thiomers: a new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev.57(11), 1569–1582 (2005).
  • Werle M , TakeuchiH, Bernkop-SchnürchA. Modified chitosans for oral drug delivery. J. Pharm. Sci.98(5), 1643–1656 (2009).
  • Rekha MR , SharmaCP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J. Control. Release135(2), 144–151 (2009).
  • Sonaje K , Lin Y-H, Juang J-H, Wey S-P, Chen C-T, Sung H-W. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials30(12), 2329–2339 (2009).
  • Woitiski CB , SarmentoB, CarvalhoRA, NeufeldRJ, VeigaF. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int. J. Pharm.412(1–2), 123–131 (2011).
  • Varela MC , GuzmanM, MolpeceresJ, del Rosario Aberturas M, Rodriguez-Puyol D, Rodriguez-Puyol M. Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur. J. Pharm. Sci.12(4), 471–478 (2001).
  • Graf A , McDowellA, RadesT. Poly(alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics: is there real potential? Exp. Opin. Drug Deliv.6(4), 371–387 (2009).
  • El-Shabouri MH . Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm.249(1–2), 101–108 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.