128
Views
0
CrossRef citations to date
0
Altmetric
Review

Hydrogels As drug-delivery Platforms: Physicochemical Barriers and Solutions

, , &
Pages 775-786 | Published online: 01 Jun 2012

References

  • Berger J , ReistM, MayerJM, FeltO, GurnyR. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm.57, 19–34 (2004).
  • Peppas NA , BuresP, LeobandungW, ChikqwaH. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm.50, 27–46 (2000).
  • Hoffman AS . Hydrogels for biomedical applications. Adv. Drug Deliv. Rev.43, 3–12 (2002).
  • Lin CC , MettersAT. Hydrogels in controlled release formulations: network design and mathematical modelling. Adv. Drug Deliv. Rev.58, 1379–1408 (2006).
  • Jagur-Grodzinski J . Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym. Adv. Technol.21, 27–47 (2010).
  • Costa-Junior ES , Barbosa-StancioliEF, MansurAP, VasconcelosWL, MansurHS. Preparation and characterization of chitosan/poly(vinyl) alcohol chemically crosslinked blends for biomedical applications. Carbohydr. Polym.76, 472–481 (2009).
  • Amsden B . Solute diffusion within hydrogels: mechanisms and models. Macromolecules31, 8382–8395 (1998).
  • Peppas NA , MikosAG. Preparation methods and structure of hydrogels. In: Hydrogels in Medicine and Pharmacy (Volume 1). Peppas NA (Ed.). CRC Press, Boca Raton, FL, USA, 1–27 (1986).
  • Anseth KS , Bownman,CN, Brannon-PeppasL. Mechanical properties of hydrogels and their experimental determination. Biomaterials17, 1647–1657 (1996).
  • Davis TP , HuglinMB. Effect of composition on properties of copolymeric N-vinyl-2–7 pyrrolidone /methylmethacrylate hydrogels and organogels. Polymer31, 513–519 (1990).
  • Vogel MK , CrossRA, BixlerHJ, GuzmanRJ. Medical uses for polyelectrolyte complexes. J. Macromol. Sci. Chem.4, 675–692 (1970).
  • Bhattarai N , GunnJ, ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev.62, 83–99 (2010).
  • Drury JL , DennisRG, MooneyDJ. The tensile properties of alginate hydrogels. Biomaterials25, 3187–3199 (2004).
  • Jeffrey L , HinkleyA, MorgretLD, GehrkeSH. Tensile properties of two responsive hydrogels. Polymer45, 8837–8843 (2004).
  • Svensson A , NicklassonE, HarrahTet al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431(2005).
  • Awad HA , Quinn Wickham M, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate and gelatine scaffolds. Biomaterials25, 3211–3222 (2004).
  • Ranta-Eskola AJ . Use of the hydraulic bulge test in biaxial tensile testing. Int. J. Mech. Sci.21, 457–465 (1979).
  • Tsakalakos T . The bulge test: a comparison of the theory and experiment for isotropic and anisotropic films. Thin Solid Films75, 293–305 (1981).
  • Mirshams RA , PothapragadaRM. Correlation of nanoindentation measurements of nickel made using geometrically different indenter tips. Acta Mater.54, 1123–1134 (2006).
  • De Groot CJ , Van Luyn MJA, Van Dijk-Wolthuis WNE et al.In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials22, 1197–1203 (2001).
  • Jatav , VS, Singh, H, Singh, SK. Recent trends on hydrogel in human body. Int. J. Res. Pharm. Biomed. Sci.2, 442–447 (2011).
  • Pal K , BanthiaAK, MajumdarDK. Polymeric hydrogels: characterization and biomedical applications – a mini review. Designed Monomers Polym.12, 197–220 (2009).
  • Biazar E , RoveimiabZ, ShahhosseiniG, KhataminezhadM, ZafariM, MajdiA. Biocompatibility evaluation of a new hydrogel dressing based on polyvinylpyrrolidone/polyethylene glycol. J. Biomed. Biotechnol. doi:10.1155/2012/343989 (2012) (Epub ahead of print).
  • Danielsson C , RuaultS, SimonethM, NeuenschwanderP, FreyaP. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials27, 1410–1415 (2006).
  • Sajeesh S , BouchemalK, SharmaCP, VauthierC. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery. Eur. J. Pharm. Biopharm.74, 209–218 (2010).
  • Liang L , XuXD, ChenCSet al. Evaluation of the biocompability of novel peptide hydrogel in rabbit eye. J. Biomed. Mater. Res. B Appl. Biomater. 93, 324–332 (2010).
  • Patel VR , AmjiMM. Preparation and characterization of freeze-dried chitosan and poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm. Res.13, 588–593 (1996).
  • Yamaguta T , MorishitaM, KavimandanNJet al. Characterisation of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids. J. Control Release 112, 343–349 (2006).
  • Alvarez-Lorenzo C , YanezF, ConcheiroA. Ocular drug delivery from molecularly-imprinted contact lenses. J. Drug Deliv. Sci. Technol.20, 237–248 (2010).
  • Xinming l, Yingde C, Lloyd AW et al. Uptake and release of dexamethasone phosphate from silicone hydrogel and group I, II, and IV hydrogel contact lenses. Cont. Lens Anterior Eye31, 57–64 (2008).
  • Andrade-Vivero P , Fernandez-GabrielE, Alvarez-LorenzoC, ConcheiroA. Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers. J. Pharm. Sci.96, 802–813 (2007).
  • Gulsen D , ChauhanA. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int. J. Pharm.292, 95–117 (2005).
  • Carlfors J , EdsmanK, PertersonR, JonvingK. Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur. J. Pharm. Sci.6, 113–119 (1998).
  • Moriyama K , YuiN. Regulated insulin release from biodegradable dextran hydrogels containing polyethylene glycol. J. Control Release42, 237–248 (1996).
  • Megeed Z , CappelloJ, GhandehariH. In vitro and in vivo evaluation of recombinant silk-elastin like hydrogels for cancer gene therapy. J. Control Release94, 433–445 (2004).
  • Quick D , AnsethK. DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality. J. Control Release96, 341–351 (2004).
  • Lei P , PadmashaliRM, AndreadisST. Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials30, 3790–3799 (2009).
  • Wieland JA , Houchin-RayTL, SheaLD. Non-viral vector delivery from PEG hyaluronic acid hydrogels. J. Control Release120, 233–241 (2007).
  • Lei Y , HuwanS, Sharif-KashaniP, ChenY, KavehpourP, SeguraT. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials31, 9106–9116 (2010).
  • Nguyen KT , WestJL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials23, 4307–4314 (2002).
  • Mann BK , BobinAS, TsaiAT, SchmedienRH, WestJL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials22, 30–45 (2001).
  • Ferreira P , CoelhoJFJ, Dos Santos KSCR, Ferreira EI, Gil MH. Thermal characterization of chitosan-grafted membranes to be used as wound dressings J. Carbohydr. Chem.25, 233–251 (2006).
  • West JL , HubbellJA. Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles of hydrogel medial and luminal factors in arterial healing. Proc. Natl Acad. Sci.93, 13188–13193 (1996).
  • Hoare TR , KohaneDS. Hydrogels in drug delivery: progress and challenges. Polymer49, 1993–2007 (2008).
  • Long D , Van Luyen D. Chitosan-carboxymethylcellulose hydrogel as supports for cell immobilization. J. Macromol. Sci. Pure Appl. Chem. A33, 1875–1884 (1996).
  • Tsao TC , ChangCH, LinYYet al. Antibacterial activity and biocompatibility of a chitosan–c-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr. Res. 345, 1774–1780 (2010).
  • Shaha HK , ConkiebJA, TaitRC, JohsonaJR, WisonaCG. A novel biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate. Int. J. Pharm.404, 124–132 (2011).
  • Chellat F , TabrizianM, DumitriuSet al. In vitro and in vivo biocompatibility of chitosan–xanthanpolyionic complex. J. Biomed. Mater. Res.51, 107–116 (2000).
  • Sakiyama T , TakataH, KikuchiM, NakanishiK. Polyelectrolyte complex gel with high pH-sensitivity prepared from dextran sulphate and chitosan. J. Appl. Polym. Sci.73, 2227–2233 (1999).
  • Feng X , PeltonR. Carboxymethyl cellulose: polyvinylamine complex hydrogel swelling. Macromolecules40, 1624–1630 (2007).
  • Piyakulawat P , PraphairaksitN, ChantarasiriN, MuangsinN. Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS Pharm. Sci. Tech.8(4), E97 (2007).
  • Beauchamp RO , St Clair MB, Fennell TR, Clarke DO, Morgan KT. A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol.22, 143–174 (1992).
  • Murata-Kamiya N , KamiyaH, KajiH, KasaiH. Mutational specificity of glyoxal, a product of DNA oxidation, in the lacI gene of wild-type Escherichia coli. Mutat. Res.377, 255–262 (1997).
  • Mi FL , TanYC, LiangHF, SungHW. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials23, 181–191 (2002).
  • Ying L , SunJA, JiangGQ, JiaZ, DingFX. In vitro evaluation of lysozyme-loaded microspheres in thermosensitive methylcellulose-based hydrogel. J. Chem. Eng.15, 566–572 (2007).
  • Ito T , YenY, HighleyCB, BellasE, BenitezCA, KohaneDS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials28, 975–985 (2007).
  • Mastekova R , ChalupovaZ, SklubalovaZ. Stimuli sensitive hydrogels in controlled and sustained drug delivery. Micina39, 19–24 (2003).
  • Katchalsky A , MichaeliI. Polyelectrolyte gels in salt solution. J Polym. Sci.15, 69–86 (1955).
  • Qiu Y , ParkK. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.53, 321–339 (2001).
  • Kim B , LimSH, RyooW. Preparation and characterization of pH-sensitive anionic hydrogel microparticles for oral protein-delivery applications. J. Biomater. Sci. Polym. Ed.20, 427–436 (2009).
  • Mahkam M . New interpolymers as hydrogels for oral protein delivery application. J. Drug. Target17(1), 29–35 (2009).
  • Nho YC , ParkSE, KimHI, HwangTS. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation. Nucl. Instrum. Methods Phys. Res. B236, 283–288 (2005).
  • Mundargi RC , RangaswamyR, AminabhaviTM. Poly(N-vinylcaproloactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery. J. Microencapsul.28, 384–394 (2011).
  • Gupta KM , BarnesSR, TangaroRAet al. Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 96, 670–681 (2007).
  • Chang JY , OhYK, ChoiHG, KimYB, KimCK. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J. Pharm.241, 155–163 (2002).
  • Kohori F , YokoyamaM, SakaiK, OkanoT. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J. Control. Release7, 155–163 (2002).
  • Chen PC , KohaneDS, ParkYJ, BartletRH, LangerR, YangC. Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res. A70, 459–466 (2004).
  • Whiting CJ , VoiceAM, OmstedPD, McLeishTCB. Shear modulus of polyelectrolyte gels under electric field. J. Phys. Condens. Mater.13, 1381–1393 (2001).
  • Ramanathan S , BlockLH. The use of chitosan gels as matrices for electrically-modulated drug delivery. J. Control. Release70, 109–123 (2001).
  • Kim SJ , YoonSG, LeeYM, KimSI. Electrical sensitive behaviour of poly(vinyl alchohol)/poly (diallyldimethylammonium chloride) IPN hydrogel. Sens. ActuatorsB88, 286–291 (2003).
  • Liu TY , HuSH, LiuKH, LiuDM, ChenSY. Preparation and characterization of smart magnetic hydrogels and its use for drug release. J. Magn. Magn. Mater.304, 397–399 (2006).
  • Sutter M , SiepmannJ, HenninkWE, JiskootW. Recombinant gelatin hydrogels for the sustained release of proteins. J. Control. Release119(3), 301–312 (2007).
  • Nuttleman CR , TripodiMC, AnsethKS. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J. Biomed. Mater. Res. A76(1), 183–195 (2006).
  • Bouhadir K H, Kruger GM, Lee KY, Mooney DJ. Sustained and controlled release of daunomycin from cross-linked poly(aldehyde guluronate) hydrogels. J. Pharm. Sci.89(7), 910–919 (2000).
  • Schoenmakers RG , van de Wetering P, Elbert DL, Hubbell JA. The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J. Control. Release95, 291–300 (2004).
  • Slaughter BV , KhurshidSS, FisherOZ, KhademhosseiniA, PeppasNA. Hydrogels in regenerative medicine. Adv. Mater.21, 3307–3729 9 (2009).
  • Zhang J , PeppasNA. Molecular interactions in poly (methacrylic acid)/poly (N-isopropyl acrylamide) interpenetrating polymer networks. J. Appl. Polym. Sci.82, 1077–1082 (2001).
  • Wang W , WangA. Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr. Polym.80, 1028–1036 (2010).
  • Lee WF , ChenYJ. Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J. Appl. Polym. Sci.82, 2487–2496 (2001).
  • Na K , BaeYH. Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/ sulphonamide conjugate: characterization, aggregation and adriamycin release in vitro. Pharm. Res.19, 681–688 (2004).
  • Yeo YQ , YangFL, HuFQ, DuYZ, YuanH, YuHY. Core-modified chitosan based polymeric micelles for controlled release of doxorubicin. Int. J. Pharm.352, 294–301 (2008).
  • Bae JW , GoDH, ParkKD, LeeSJ. Thermosensitive chitosan as an injectable carrier for local drug delivery. Macromol. Res.14, 461–465 (2006).
  • Rahmani-Neishaboor E , JacksonJ, BurtH, GhaharyA. Composite hydrogel formulations of Stratifin to control MMP-1 expression in dermal fibroblasts. Pharm. Res.26(8), 2002–2014 (2009).
  • Weng L , LeHC, LinJ, GolzarianJ. Doxorubicin loading and eluting characteristics of bioresorbable hydrogel microspheres: in vitro study. Int. J. Pharm.409, 185–193 (2011).
  • Collier JH , HuBH, RubertiJWet al. Thermally and photochemically triggered self-assembly of peptide hydrogels. J. Am. Chem. Soc. 123, 9463–9464 (2001).
  • Liang L , YangJ, LiQet al. A novel targeting drug delivery system based on self-assembled peptide hydrogel. J. Biomater. Nanobiotechnol. 2, 622–625 (2011).
  • Ozbas B , KretsingerJ, RajagopalK, SchneiderJP, PochanDJ. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules37, 7331–7337 (2004).
  • Pochan DJ , SchneiderJP, KretsingerJ, OzbasB, RajagopalK, HainesL. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J. Am. Chem. Soc.125, 11802–11803 (2003).
  • Schneider JP , PochanDJ, OzbasB, RajagopalK, PakstisL, KretsingerJ. Responsive hydrogels from the intermolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc.124, 15030–15037 (2002).
  • Chung HJ , ParkTG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today4, 429–437 (2009).
  • Atunbas A , LeeSJ, RajaasekaranSA, SchneiderJP, PochanDJ. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials32, 5906–5914 (2011).
  • Silva GA , CzeislerC, NieceKLet al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).
  • Vemula PK , CruikshankGA, KarpJM, JohnG. Self-assembled prodrugs: an enzymatically triggered drug-delivery platform. Biomaterials30, 383–393 (2009).
  • Oh JK , DrumrightR, SiegwartD, MatyjaszewskiK. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci.33, 448–477 (2008).
  • Kim Y , ThapaM, HuaDH, ChangKO. Biodegradable nanogels for oral delivery of interferon for norovirus infection. Antiviral Res.89, 165–173 (2011).
  • Sahiner N , GodbeyWT, McPhersonGL, JohnVT. Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Coll. Polym. Sci.284, 1121–1129 (2006).
  • Chen Y , ZhengX, QianH, MaoZ, DingD, JiangX. Hollow core-porous shell structure poly(acrylic acid) nanogels with a super high capacity of drug loading. Appl. Mater. Interfaces2, 3532–3538 (2010).
  • Kuckling D , VoCD, WohlrabSE. Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-crosslinking. Langmuir18, 4263–4269 (2002).
  • Bhuchar N , SunaseeR, IshiharaKet al. Degradable thermoresponsive nanogels for protein encapsulation and controlled release. Bioconj. Chem. 23, 75–83 (2012).
  • Ryu JH , JiwpanichS, ChackoR, BickertonS, ThaymuanavaS. Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities. J. Am. Chem. Soc.132, 8246–8247 (2010).
  • Cai C , Bakowsky,U, RyttingE, SchaperAK, KisselT. Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein. Eur. J. Pharm. Biopharm.69, 31–42 (2008).
  • Smith MH , SouthAM, GauldingJC, LyonLA. Monitoring the erosion of hydrolytically-degradable nanogels via multi angle light scattering coupled to asymmetrical flow field-flow fractionation. Anal. Chem.82, 523–530 (2010).

Patent

  • Nagai T, Machida Y, Suzuki Y, Ikura H: US4226848 (1980).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.