249
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gold nanoparticle-enhanced Photodynamic therapy: Effects of Surface Charge and Mitochondrial Targeting

, , , , , & show all
Pages 307-321 | Published online: 08 Apr 2015

References

  • Sibata CH Colussi VC Oleinick NL et al. Photodynamic therapy: a new concept in medical treatment. Braz. J. Med. Biol. Res.33 (8), 869–880 (2000).
  • Yang Y Wang H . Perspectives of nanotechnology in minimally invasive therapy of breast cancer. J. Healthc. Eng.4 (1), 67–86 (2013).
  • Yang Y Wang H . Applications of nanomaterials for cancer treatment: recent patents review. Recent Pat. Nanomed.3 (2), 75–82 (2013).
  • Dougherty TJ Gomer CJ Henderson BW et al. Photodynamic therapy. J. Natl Cancer Inst.90 (12), 889–905 (1998).
  • Shackley DC Whitehurst C Moore JV et al. Photodynamic therapy. J. R. Soc. Med.92, 562–565 (1999).
  • Huang Z Xu H Meyers AD et al. Photodynamic therapy for treatment of solid tumors-potential and technical challenges. Technol. Cancer Res. Treat.7 (4), 309–320 (2008).
  • Lukšienė Ž . Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas)39 (12), 1137–1150 (2003).
  • Dolmans DE Fukumura D Jain RK . Photodynamic therapy for cancer. Nat. Rev. Cancer3 (5), 380–387 (2003).
  • Master AM Qi Y Oleinick NL et al. EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine8 (5), 655–664 (2012).
  • Khaing Oo MK Yang X Du H et al. 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine3 (6), 777–786 (2008).
  • Oo MKK Yang Y Hu Y et al. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano6 (3), 1939–1947 (2012).
  • Yang Y Hu Y Du H et al. Intracellular induced gold nanoaggregates by electrostatic interaction and their applications in photodynamic therapy. Chem. Commun. (Camb).50 (55), 7287–7290 (2014).
  • Chithrani BD Ghazani AA Chan WCW . Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6 (4), 662–668 (2006).
  • Alkilany AM Murphy CJ . Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?J. Nanopart. Res.12 (7), 2313–2333 (2010).
  • Albanese A Tang PS Chan WCW . The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng.14, 1–16 (2012).
  • Cho EC Au L Zhang Q et al. The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small6 (4), 517–522 (2011).
  • Verma A Stellacci F . Effect of surface properties on nanoparticle-cell interactions. Small6 (1), 12–21 (2010).
  • Abercrombie M Ambrose EJ Abercrombie A et al. The surface properties of cancer cells: a review. Cancer Res.22, 525–548 (1962).
  • Gogvadze V Orrenius S Zhivotovsky B . Mitochondria as targets for chemotherapy. Apoptosis14 (4), 624–640 (2009).
  • Zhao J Zhang J Yu M et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene32 (40), 4814–4824 (2012).
  • Wallace DC . Mitochondria and cancer. Nat. Rev. Cancer.12 (10), 685–698 (2012).
  • Lei W Xie J Hou Y et al. Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant. J. Photochem. Photobiol. B.98 (2), 167–171 (2010).
  • Wachowska M Muchowicz A Firczuk M et al. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules16 (5), 4140–4164 (2011).
  • Manczak M Mao P Calkins MJ et al. Mitochondria-targeted antioxidants protect against Abeta toxicity in Alzheimer's disease neurons. J. Alzheimers Dis.20 (Suppl. 2), S609–S631 (2010).
  • Szeto HH Schiller PW . Novel therapies targeting inner mitochondrial membrane‐‐from discovery to clinical development. Pharm. Res.28 (11), 2669–2679 (2011).
  • Ragg R Natalio F Tahir MN et al. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano8 (5), 5182–5189 (2014).
  • Wang X-H Peng H-S Yang L et al. Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. J. Mater. Chem. B.1, 5143–5152 (2013).
  • Marrache S Dhar S . Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA109 (40), 16288–16293 (2012).
  • Ju-Nam Y Bricklebank N Allen DW et al. Phosphonioalkylthiosulfate zwitterions-new masked thiol ligands for the formation of cationic functionalised gold nanoparticles. Org. Biomol. Chem.4 (23), 4345–4351 (2006).
  • Abdelhalim MAK Mady MM . Physical properties of different gold nanoparticles: ultraviolet-visible and fluorescence measurements. J. Nanomed. Nanotechnol.3 (3), 1–5 (2012).
  • Yamamoto J Yamamoto S Hirano T et al. Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma. Clin. Cancer Res.12 (23), 7132–7139 (2006).
  • Marshall KC . In vivo electrophysiological maturation of neurons derived from a multipotent precursor (embryonal carcinoma) cell line. Brain Res. Dev. Brain Res.84 (1), 130–141 (1995).
  • Leroueil PR Hong S Mecke A et al. Nanoparticle interaction with biological membranes. Acc. Chem. Res.40 (5), 335–342 (2008).
  • Cho K Wang X Nie S et al. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res.14 (5), 1310–1316 (2008).
  • Yue Z Wei W Lv P et al. Surface charge affects cellular uptake and intracellular trafficking of. Biomacromolecules12 (7), 2440–2446 (2011).
  • Arvizo RR Miranda OR Thompson M et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett.10 (7), 2543–2548 (2010).
  • Yu J Baek M Chung HE et al. Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake. J. Phys. Conf. Ser.304, 012007 (2011).
  • Rasmussen JW Martinez E Louka P et al. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv.7 (9), 1063–1077 (2011).
  • Chen L Mccrate JM Lee JC-M et al. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology22 (10), 105708 (2011).
  • Ruoslahti E Bhatia SN Sailor MJ . Targeting of drugs and nanoparticles to tumors. J. Cell Biol.188 (6), 759–768 (2010).
  • Al-Dosari MS Gao X . Nonviral gene delivery: principle, limitations, and recent progress. AAPS J.11 (4), 671–681 (2009).
  • Kim CH Chung C-W Choi KH et al. Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells. Int. J. Nanomedicine.6, 1357–1363 (2011).
  • Pudroma X Moan J Ma L-W et al. A comparison of 5-aminolaevulinic acid- and its heptyl ester: Dark cytotoxicity and protoporphyrin IX synthesis in human adenocarcinoma cells and in athymic nude mice healthy skin. Exp. Dermatol.18 (11), 985–987 (2009).
  • Millon SR Ostrander JH Yazdanfar S et al. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes. J. Biomed. Opt.15 (1), 018002 (2010).
  • Oleinick NL Morris RL Belichenko I . The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci.1, 1–21 (2002).
  • Oleinick NL Evans HH . The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat. Res.150 (5 Suppl.), S146–S156 (1998).
  • Peng Q Warloe T Moan J et al. 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer79 (12), 2282–2308 (1997).
  • Lu W Ogasawara M Huang P . Models of reactive oxygen species in cancer. Drug Discov. Today. Dis. Models4 (2), 67–73 (2007).
  • Nathan AT Singer M . The oxygen trail: tissue oxygenation. Br. Med. Bull.55 (1), 96–108 (1999).
  • Fang J Seki T Maeda H . Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv. Drug Deliv. Rev.61 (4), 290–302 (2009).
  • Modica-Napolitano JS Singh K . Mitochondria as targets for detection and treatment of cancer. Expert Rev. Mol. Med.4 (9), 1–19 (2004).
  • Lévy R Shaheen U Cesbron Y et al. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev.1, 4489 (2010).
  • Guo S Huang L . Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J. Nanomater.2011, 1–12 (2011).
  • Akita H Enoto K Masuda T et al. Particle tracking of intracellular trafficking of octaarginine-modified liposomes: a comparative study with adenovirus. Mol. Ther.18 (5), 955–964 (2010).
  • Wang L Liu Y Li W et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett.11 (2), 772–780 (2011).
  • Michelakis ED . Mitochondrial medicine: a new era in medicine opens new windows and brings new challenges. Circulation117 (19), 2431–2434 (2008).
  • Grandinetti G Ingle NP Reineke TM . Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria; implications for a mechanism of cytotoxicity. Mol. Pharm.8 (5), 1709–1719 (2012).
  • Moghimi SM Symonds P Murray JC et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther.11 (6), 990–995 (2005).
  • Murphy MP . Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol.15 (8), 326–330 (1997).
  • Ketterer B Neumcke B Läuger P . Transport mechanism of hydrophobic ions through lipid bilayer membranes. J. Membr. Biol.5 (3), 225–245 (1971).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.