3,170
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging Therapeutic Delivery Capabilities and Challenges Utilizing Enzyme/Protein Packaged Bacterial Vesicles

, , &
Pages 873-887 | Published online: 31 Jul 2015

References

  • Lee N Choi SH Hyeon T . Nano-sized CT contrast agents. Adv. Mater.25 (19), 2641–2660 (2013).
  • Rahman M Ahmad MZ Kazmi I et al. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr. Drug Discov. Technol.9 (4), 319–329 (2012).
  • Shin MC Zhang J Min KA et al. Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J. Biomed. Mater. Res. A.102 (2), 575–587 (2014).
  • van Riet E Ainai A Suzuki T Kersten G Hasegawa H . Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv. Drug Deliver. Rev.74, 28–34 (2014).
  • Bertrand N Wu J Xu X Kamaly N Farokhzad OC . Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliver. Rev.66, 2–25 (2014).
  • Guo S Huang L . Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv.32 (4), 778–788 (2014).
  • Highsmith J . Nanoparticles In Biotechnology, Drug Development And Drug Delivery. BCC Research, MA, USA, 187 (2012).
  • Lopez-Abarrategui C Figueroa-Espi V Reyes-Acosta O Reguera E Otero-Gonzalez AJ . Magnetic nanoparticles: new players in antimicrobial peptide therapeutics. Curr. Protein Pept. Sci.14 (7), 595–606 (2013).
  • Hassan S Singh AV . Biophysicochemical perspective of nanoparticle compatibility: a critically ignored parameter in nanomedicine. J. Nanosci. Nanotechnol.14 (1), 402–414 (2014).
  • Tu Q Zhang Y Liu R et al. Active drug targeting of disease by nanoparticles functionalized with ligand to folate receptor. Curr. Med. Chem.19 (19), 3152–3162 (2012).
  • Steichen SD Caldorera-Moore M Peppas NA . A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci.48 (3), 416–427 (2013).
  • Johnson BJ Algar WR Malanoski AP Ancona MG Medintz IL . Understanding enzymatic acceleration at nanoparticle interfaces: approaches and challenges. Nano Today9 (1), 102–131 (2014).
  • Natarajan JV Nugraha C Ng XW Venkatraman S . Sustained-release from nanocarriers: a review. J. Control. Release193, 122–138 (2014).
  • Spillmann CM Naciri J Algar WR Medintz IL Delehanty JB . Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery. ACS Nano8 (7), 6986–6997 (2014).
  • Barar J Omidi Y . Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. BioImpacts4 (1), 3–14 (2014).
  • Duan X Li Y . Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small9 (9–10), 1521–1532 (2013).
  • Dellinger A Zhou Z Connor J et al. Application of fullerenes in nanomedicine: an update. Nanomedicine (Lond.)8 (7), 1191–1208 (2013).
  • Guo R Shi X . Dendrimers in cancer therapeutics and diagnosis. Curr. Drug Metab.13 (8), 1097–1109 (2012).
  • Bharali DJ Khalil M Gurbuz M Simone TM Mousa SA . Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomed.4 (1), 1–7 (2009).
  • Madaan K Kumar S Poonia N Lather V Pandita D . Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci.6 (3), 139–150 (2014).
  • Duncan R Vicent MJ . Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliver. Rev.65 (1), 60–70 (2013).
  • Ginn C Khalili H Lever R Brocchini S . Pegylation and its impact on the design of new protein-based medicines. Future Med. Chem.6 (16), 1829–1846 (2014).
  • Paraskar AS Soni S Chin KT et al. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc. Natl Acad. Sci. USA107 (28), 12435–12440 (2010).
  • Gokmen MT Du Prez FE . Porous polymer particles–a comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci.37 (3), 365–405 (2012).
  • Nazemi K Azadpour P Moztarzadeh F Urbanska AM Mozafari M . Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with plga nanoparticles: a therapeutic design for on-demand drug delivery. Mater. Lett.138, 16–20 (2015).
  • Yang Y Wang S Wang Y Wang X Wang Q Chen M . Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv.32 (7), 1301–1316 (2014).
  • Gentile P Chiono V Carmagnola I Hatton PV . An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci.15 (3), 3640–3659 (2014).
  • Mirakabad FST Nejati-Koshki K Akbarzadeh A et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev.15 (2), 517–535 (2014).
  • Ikeda Y Nagasaki Y . Pegylation technology in nanomedicine. In : Polymers In Nanomedicine (Volume 247). KunugiSYamaokaT ( Eds). Springer Berlin Heidelberg, Berlin, Germany, 115–140 (2012).
  • Acharya A . Luminescent magnetic quantum dots for in vitro/in vivo imaging and applications in therapeutics. J. Nanosci. Nanotechnol.13 (6), 3753–3768 (2013).
  • Mok H Zhang M . Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin. Drug Del.10 (1), 73–87 (2013).
  • Singh D McMillan JM Liu X-M et al. Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine (Lond.)9 (3), 469–485 (2014).
  • Zheng S-G Xu H-X Chen H-R . Nano/microparticles and ultrasound contrast agents. World J. Radiol.5 (12), 468–471 (2013).
  • Cormode DP Skajaa GO Delshad A et al. A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver. Bioconjugate Chem.22 (3), 353–361 (2011).
  • Nam J Won N Bang J et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliver. Rev.65 (5), 622–648 (2013).
  • Sengupta J Ghosh S Datta P Gomes A Gomes A . Physiologically important metal nanoparticles and their toxicity. J. Nanosci. Nanotechnol.14 (1), 990–1006 (2014).
  • Simpson CA Salleng KJ Cliffel DE Feldheim DL . In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomed. Nanotechnol.9 (2), 257–263 (2013).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov.4 (2), 145–160 (2005).
  • Dawidczyk CM Kim C Park JH et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J. Control. Release187, 133–144 (2014).
  • Ang CY Tan SY Zhao Y . Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Org. Biomol. Chem.12 (27), 4776–4806 (2014).
  • Anselmo AC Mitragotri S . An overview of clinical and commercial impact of drug delivery systems. J. Control. Release190, 15–28 (2014).
  • Cooper DL Conder CM Harirforoosh S . Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin. Drug Del.11 (10), 1661–1680 (2014).
  • Kraft JC Freeling JP Wang Z Ho RJY . Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci.103 (1), 29–52 (2014).
  • Chen WC May JP Li S-D . Immune responses of therapeutic lipid nanoparticles. Nanotechnol. Rev.2 (2), 201–213 (2013).
  • Allen TM . Long-circulating (sterically stabilized) liposomes for targeted drug-delivery. Trends Pharmacol. Sci.15 (7), 215–220 (1994).
  • Marques-Gallego P de Kroon AIPM . Ligation strategies for targeting liposomal nanocarriers. Biomed Res. Int.2014, 1–12 (2014).
  • Barenholz Y . Liposome application: problems and prospects. Curr. Opin. Colloid In.6 (1), 66–77 (2001).
  • Kiziltepe T Ashley JD Stefanick JF et al. Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo. Blood Cancer J.2 (4), e64 (2012).
  • Ashley JD Stefanick JF Schroeder VA et al. Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. J. Control. Release196, 113–121 (2014).
  • Beveridge TJ . Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol.181 (16), 4725–4733 (1999).
  • Kulkarni HM Jagannadham MV . Biogenesis and multifaceted roles of outer membrane vesicles from gram-negative bacteria. Microbiology160 (Pt 10), 2109–2121 (2014).
  • Kulp A Kuehn MJ . Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol.64 (1), 163–184 (2010).
  • Remis JP Wei D Gorur A et al. Bacterial social networks: structure and composition ofmyxococcus xanthusouter membrane vesicle chains. Environ. Microbiol.16 (2), 598–610 (2014).
  • Yaron S Kolling GL Simon L Matthews KR . Vesicle-mediated transfer of virulence genes from escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microb.66 (10), 4414–4420 (2000).
  • Mashburn-Warren L Howe J Garidel P et al. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol.69 (2), 491–502 (2008).
  • Kato S Kowashi Y Demuth DR . Outer membrane-like vesicles secreted by actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathogenesis32 (1), 1–13 (2002).
  • Horstman AL . Enterotoxigenic escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem.275 (17), 12489–12496 (2000).
  • Park AJ Surette MD Khursigara CM . Antimicrobial targets localize to the extracellular vesicle-associated proteome of pseudomonas aeruginosa grown in a biofilm. Front. Microbiol.5, 464 (2014).
  • Lee E-Y Choi D-S Kim K-P Gho YS . Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev.27 (6), 535–555 (2008).
  • Lee E-Y Bang JY Park GW et al. Global proteomic profiling of native outer membrane vesicles derived from escherichia coli. Proteomics7 (17), 3143–3153 (2007).
  • Haurat MF Aduse-Opoku J Rangarajan M et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem.286 (2), 1269–1276 (2011).
  • Simpson D McCormack PL Keating GM Lyseng-Williamson KA . Insulin lispro–a review of its use in the management of diabetes mellitus. Drugs67 (3), 407–434 (2007).
  • Kesty NC Kuehn MJ . Incorporation of heterologous outer membrane and periplasmic proteins into escherichia coli outer membrane vesicles. J. Biol. Chem.279 (3), 2069–2076 (2003).
  • Gujrati V Kim S Kim S-H et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano8 (2), 1525–1537 (2014).
  • Ghrayeb J Inouye M . Nine amino acid residues at the NH2-terminal of lipoprotein are sufficient for its modification, processing, and localization in the outer-membrane of Escherichia coli. J. Biol. Chem.259 (1), 463–467 (1984).
  • Francisco JA Campbell R Iverson BL Georgiou G . Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl Acad. Sci. USA90 (22), 10444–10448 (1993).
  • Sapsford KE Algar WR Berti L et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev.113 (3), 1904–2074 (2013).
  • Algar WR Prasuhn DE Stewart MH et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem.22 (5), 825–858 (2011).
  • Alves NJ Cusick W Stefanick JF Ashley JD Handlogten MW Bilgicer B . Functionalized liposome purification via liposome extruder purification (LEP). Analyst138 (17), 4746–4751 (2013).
  • Steeghs L Kuipers B Hamstra HJ Kersten G van Alphen L van der Ley P . Immunogenicity of outer membrane proteins in a lipopolysaccharide-deficient mutant of neisseria meningitidis: influence of adjuvants on the immune response. Infect. Immun.67 (10), 4988–4993 (1999).
  • Sapsford KE Tyner KM Dair BJ Deschamps JR Medintz IL . Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem.83 (12), 4453–4488 (2011).
  • Patterson DP Prevelige PE Douglas T . Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano6 (6), 5000–5009 (2014).
  • Jang SC Kim SR Yoon YJ et al. In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria. Small11 (4), 456–461 (2015).