1,167
Views
10
CrossRef citations to date
0
Altmetric
Reports

p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch

, , , &
Pages 3207-3217 | Received 02 Jul 2014, Accepted 30 Jul 2014, Published online: 06 Nov 2014

References

  • Schulman BA, Chen ZJ. Protein ubiquitination: CHIPping away the symmetry. Mol Cell 2005; 20(5):653-5; PMID:16337587; http://dx.doi.org/10.1016/j.molcel.2005.11.019
  • Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7(8):758-65; http://dx.doi.org/10.1038/ncb0805-758
  • Bernassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14(1):10-21; PMID:18598940; http://dx.doi.org/10.1016/j.ccr.2008.06.001
  • Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005; 435(7041):452-8; PMID:15917799; http://dx.doi.org/10.1038/nature03555
  • Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, Forman-Kay JD. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 2007; 130(4):651-62; PMID:17719543; http://dx.doi.org/10.1016/j.cell.2007.06.050
  • Melino G, Gallagher E, Aqeilan RI, Knight R, Peschiaroli A, Rossi M, Scialpi F, Malatesta M, Zocchi L, Browne G, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ 2008; 15(7):1103-12; PMID:18552861; http://dx.doi.org/10.1038/cdd.2008.60
  • Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9(3):254-62; http://dx.doi.org/10.1038/ni1563
  • Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol 2009; 19(15):1255-63; PMID:19592251; http://dx.doi.org/10.1016/j.cub.2009.06.038
  • Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, Rider NL, Chikwava KR, Cummings OW, Morton DH, et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet 2010; 86(3):447-53; PMID:20170897; http://dx.doi.org/10.1016/j.ajhg.2010.01.028
  • Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J 2009; 28(5):513-22; PMID:19131965; http://dx.doi.org/10.1038/emboj.2008.285
  • Zhang H, Wu C, Matesic LE, Li X, Wang Z, Boyce BF, Xing L. Ubiquitin E3 ligase Itch negatively regulates osteoclast formation by promoting deubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. J Biol Chem 2013; 288(31):22359-68; PMID:23782702; http://dx.doi.org/10.1074/jbc.M112.442459
  • Amiel J, Bougeard G, Francannet C, Raclin V, Munnich A, Lyonnet S, Frebourg T. TP63 gene mutation in ADULT syndrome. Eur J Hum Genet 2001; 9(8):642-5; PMID:11528512; http://dx.doi.org/10.1038/sj.ejhg.5200676
  • Hansen TM, Rossi M, Roperch JP, Ansell K, Simpson K, Taylor D, Mathon N, Knight RA, Melino G. Itch inhibition regulates chemosensitivity in vitro. Biochem Biophys Res Commun 2007; 361(1):33-6; PMID:17640619; http://dx.doi.org/10.1016/j.bbrc.2007.06.104
  • Rossi M, Rotblat B, Ansell K, Amelio I, Caraglia M, Misso G, Bernassola F, Cavasotto CN, Knight RA, Ciechanover A, et al. High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death Dis 2014; 5:e1203; http://dx.doi.org/10.1038/cddis.2014.113
  • Eldridge AG, O'Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 2010; 17(1):4-13; PMID:19557013; http://dx.doi.org/10.1038/cdd.2009.82
  • Manzl C, Fava LL, Krumschnabel G, Peintner L, Tanzer MC, Soratroi C, Bock FJ, Schuler F, Luef B, Geley S, et al. Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on Caspase-2 or the PIDDosome. Cell Death Dis 2013; 4:e942; http://dx.doi.org/10.1038/cddis.2013.470
  • Louwen F, Yuan J. Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4(7):958-71; PMID:23948487
  • Neise D, Sohn D, Stefanski A, Goto H, Inagaki M, Wesselborg S, Budach W, Stühler K, Jänicke RU. The p90 ribosomal S6 kinase (RSK) inhibitor BI-D1870 prevents gamma irradiation-induced apoptosis and mediates senescence via RSK- and p53-independent accumulation of p21WAF1/CIP1. Cell Death Dis 2013; 4:e859; http://dx.doi.org/10.1038/cddis.2013.386
  • Sayan BS, Sayan AE, Knight RA, Melino G, Cohen GM. p53 is cleaved by caspases generating fragments localizing to mitochondria. J Biol Chem 2006; 281(19):13566-73; PMID:16531411; http://dx.doi.org/10.1074/jbc.M512467200
  • Melino G, Knight RA, Nicotera P. How many ways to die? How many different models of cell death? Cell Death Differ 2005; 12 Suppl 2:1457-62; PMID:16247490; http://dx.doi.org/10.1038/sj.cdd.4401781
  • Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12(18):3098-108; PMID:23974096; http://dx.doi.org/10.4161/cc.26162
  • Evangelou K, Bartkova J, Kotsinas A, Pateras IS, Liontos M, Velimezi G, Kosar M, Liloglou T, Trougakos IP, Dyrskjot L, et al. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ 2013; 20(11):1485-97; PMID:23852374; http://dx.doi.org/10.1038/cdd.2013.76
  • Salah Z, Cohen S, Itzhaki E, Aqeilan RI. NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation. Cell Cycle 2013; 12(24):3817-23; PMID:24107629; http://dx.doi.org/10.4161/cc.26672
  • Zambetti GP. Expanding the reach of the p53 tumor suppressor network. Cell Death Differ 2014; 21(4):505-6; PMID:24608846; http://dx.doi.org/10.1038/cdd.2014.13
  • Selvarajah J, Nathawat K, Moumen A, Ashcroft M, Carroll VA. Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways. Cell Death Dis 2013; 4:e865; http://dx.doi.org/10.1038/cddis.2013.395
  • Roh JL, Kim EH, Park HB, Park JY. The Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin increases cisplatin antitumor activity by inducing p53-mediated apoptosis in head and neck cancer. Cell Death Dis 2013; 4:e956; http://dx.doi.org/10.1038/cddis.2013.488
  • Bartoletti-Stella A, Mariani E, Kurelac I, Maresca A, Caratozzolo MF, Iommarini L, Carelli V, Eusebi LH, Guido A, Cenacchi G, et al. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α. Cell Death Dis 2013; 4:e663; http://dx.doi.org/10.1038/cddis.2013.187
  • Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 2013; 20(11):1465-74; PMID:23703322; http://dx.doi.org/10.1038/cdd.2013.52
  • Yu Y, Huang H, Li J, Zhang J, Gao J, Lu B, Huang C. GADD45β mediates p53 protein degradation via Src/PP2A/MDM2 pathway upon arsenite treatment. Cell Death Dis 2013; 4:e637; http://dx.doi.org/10.1038/cddis.2013.162
  • Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, Krammer PH, Melino G. TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle 2007; 6(3):274-85; PMID:17264681; http://dx.doi.org/10.4161/cc.6.3.3797
  • Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R, Knight R, Melino G. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 2007; 104(29):11999-2004; http://dx.doi.org/10.1073/pnas.0703458104
  • Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, Federici M, Dinsdale D, Knight RA, Melino G, et al. TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev1 2012; 26(18):2009-14; PMID:22987635; http://dx.doi.org/10.1101/gad.197640.112
  • Martynova E, Pozzi S, Basile V, Dolfini D, Zambelli F, Imbriano C, Pavesi G, Mantovani R. Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 2012; 3(2):132-43; PMID:22361592
  • Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A, Lane DP, Callen DF. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2011; 2(12):1203-17; PMID:22203497
  • Tomasini R, Secq V, Pouyet L, Thakur AK, Wilhelm M, Nigri J, Vasseur S, Berthezene P, Calvo E, Melino G, et al. TAp73 is required for macrophage-mediated innate immunity and the resolution of inflammatory responses. Cell Death Differ 2013; 20(2):293-301; PMID:22976836; http://dx.doi.org/10.1038/cdd.2012.123
  • Kadakia MP, Caron de Fromentel C, Sabapathy K. The 5th International p63/p73 Workshop: much more than just tumour suppression. Cell Death Differ 2012; 19(3):549-50; PMID:22240899; http://dx.doi.org/10.1038/cdd.2011.204
  • Alexandrova EM, Petrenko O, Nemajerova A, Romano RA, Sinha S, Moll UM. ΔNp63 regulates select routes of reprogramming via multiple mechanisms. Cell Death Differ 2013; 20(12):1698-708; PMID:24013722; http://dx.doi.org/10.1038/cdd.2013.122
  • Scialpi F, Malatesta M, Peschiaroli A, Rossi M, Melino G, Bernassola F. Itch self-polyubiquitylation occurs through lysine-63 linkages. Biochem Pharmacol 2008; 76(11):1515-21; PMID:18718449; http://dx.doi.org/10.1016/j.bcp.2008.07.028
  • Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 2011; 18(9):1487-99; PMID:21760596; http://dx.doi.org/10.1038/cdd.2011.81
  • Yallowitz AR, Alexandrova EM, Talos F, Xu S, Marchenko ND, Moll UM. p63 is a prosurvival factor in the adult mammary gland during post-lactational involution, affecting PI-MECs and ErbB2 tumorigenesis. Cell Death Differ 2014; 21(4):645-54; PMID:24440910; http://dx.doi.org/10.1038/cdd.2013.199
  • Chari NS, Romano RA, Koster MI, Jaks V, Roop D, Flores ER, Teglund S, Sinha S, Gruber W, Aberger F, et al. Interaction between the TP63 and SHH pathways is an important determinant of epidermal homeostasis. Cell Death Differ 2013; 20(8):1080-8; PMID:23686138; http://dx.doi.org/10.1038/cdd.2013.41
  • Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129(3):523-36; PMID:17482546; http://dx.doi.org/10.1016/j.cell.2007.02.045
  • Paris M, Rouleau M, Pucéat M, Aberdam D. Regulation of skin aging and heart development by TAp63. Cell Death Differ 2012; 19(2):186-93; PMID:22158419; http://dx.doi.org/10.1038/cdd.2011.181
  • Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ, Feng Z, Agostini M, Zolla L, Agrò AF, et al. p63 regulates glutaminase 2 expression. Cell Cycle 2013; 12(9):1395-405; PMID:23574722; http://dx.doi.org/10.4161/cc.24478
  • Luh LM, Kehrloesser S, Deutsch GB, Gebel J, Coutandin D, Schäfer B, Agostini M, Melino G, Dötsch V. Analysis of the oligomeric state and transactivation potential of TAp73α. Cell Death Differ 2013; 20(8):1008-16; PMID:23538419; http://dx.doi.org/10.1038/cdd.2013.23
  • Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC, Dong SM, Guo Z, Benoit N, Cohen Y, et al. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 2003; 63(10):2351-7; PMID:12750249
  • Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M, Upadhyay S, Xing M, Wu F, Moon C, et al. DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 2005; 65(3):758-66; PMID:15705872
  • Huang Y, Jeong JS, Okamura J, Sook-Kim M, Zhu H, Guerrero-Preston R, Ratovitski EA. Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresistance. Cell Cycle 2012; 11(12):2367-79; PMID:22672905; http://dx.doi.org/10.4161/cc.20863
  • Huang Y, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 2012; 11(6):1247-59; PMID:22356768; http://dx.doi.org/10.4161/cc.11.6.19670
  • Huang Y, Kesselman D, Kizub D, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α/microRNA feedback regulation in squamous carcinoma cells upon cisplatin exposure. Cell Cycle 2013; 12(4):684-97; PMID:23343772; http://dx.doi.org/10.4161/cc.23598
  • Viticchiè G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, Bernardini S, Mauriello A, Miano R, Spagnoli LG, Knight RA, Candi E, Melino G. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011 Apr 1; 10(7):1121-31; http://dx.doi.org/10.4161/cc.10.7.15180
  • Celardo I, Antonov A, Amelio I, Annicchiarico-Petruzzelli M, Melino G. p63 transcriptionally regulates the expression of matrix metallopeptidase 13. Oncotarget 2014; 5(5):1279-89; PMID:24658133
  • Celardo I, Grespi F, Antonov A, Bernassola F, Garabadgiu AV, Melino G, Amelio I. Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis 2013; 4:e645; http://dx.doi.org/10.1038/cddis.2013.175
  • Marcel V, Petit I, Murray-Zmijewski F, Goullet de Rugy T, Fernandes K, Meuray V, Diot A, Lane DP, Aberdam D, Bourdon JC. Diverse p63 and p73 isoforms regulate Δ133p53 expression through modulation of the internal TP53 promoter activity. Cell Death Differ 2012; 19(5):816-26; PMID:22075982; http://dx.doi.org/10.1038/cdd.2011.152
  • He Z, Liu H, Agostini M, Yousefi S, Perren A, Tschan MP, Mak TW, Melino G, Simon HU. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ 2013; 20(10):1415-24; PMID:23912709; http://dx.doi.org/10.1038/cdd.2013.104
  • Amelio I, Grespi F, Annicchiarico-Petruzzelli M, Melino G. p63 the guardian of human reproduction. Cell Cycle 2012; 11(24):4545-51; PMID:23165243; ttp://dx.doi.org/10.4161/cc.22819
  • Hutt K, Kerr JB, Scott CL, Findlay JK, Strasser A. How to best preserve oocytes in female cancer patients exposed to DNA damage inducing therapeutics. Cell Death Differ 2013; 20(8):967-8; PMID:23832146; http://dx.doi.org/10.1038/cdd.2013.54
  • Mattiske S, Ho K, Noll JE, Neilsen PM, Callen DF, Suetani RJ. TAp63 regulates oncogenic miR-155 to mediate migration and tumour growth. Oncotarget 2013; 4(11):1894-903; PMID:24177167
  • Shekhar MP, Kato I, Nangia-Makker P, Tait L. Comedo-DCIS is a precursor lesion for basal-like breast carcinoma: identification of a novel p63/Her2/neu expressing subgroup. Oncotarget 2013; 4(2):231-41; PMID:23548208
  • Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet 2000; 67(1):59-66; PMID:10839977; http://dx.doi.org/10.1086/302972
  • Huang YP, Wu G, Guo Z, Osada M, Fomenkov T, Park HL, Trink B, Sidransky D, Fomenkov A, Ratovitski EA. Altered sumoylation of p63alpha contributes to the split-hand/foot malformation phenotype. Cell Cycle 2004; 3(12):1587-96; PMID:15539951; http://dx.doi.org/10.4161/cc.3.12.1290
  • Kantaputra PN, Hamada T, Kumchai T, McGrath JA. Heterozygous mutation in the SAM domain of p63 underlies Rapp-Hodgkin ectodermal dysplasia. J Dent Res 2003; 82(6):433-7; PMID:12766194; http://dx.doi.org/10.1177/154405910308200606
  • Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 2011; 12(4):259-65; http://dx.doi.org/10.1038/nrm3086
  • Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, Raff M. Roles for p53 and p73 during oligodendrocyte development. Development 2004; 131(6):1211-20; PMID:14960496; http://dx.doi.org/10.1242/dev.01035
  • Gonzalez-Cano L, Hillje AL, Fuertes-Alvarez S, Marques MM, Blanch A, Ian RW, Irwin MS, Schwamborn JC, Marín MC. Regulatory feedback loop between TP73 and TRIM32. Cell Death Dis 2013; 4:e704; http://dx.doi.org/10.1038/cddis.2013.224
  • Masse I, Barbollat-Boutrand L, Molina M, Berthier-Vergnes O, Joly-Tonetti N, Martin MT, Caron de Fromentel C, Kanitakis J, Lamartine J. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell Death Dis 2012; 3:e318; http://dx.doi.org/10.1038/cddis.2012.62
  • Tomasini R, Mak TW, Melino G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 2008; 18(5):244-52; PMID:18406616; http://dx.doi.org/10.1016/j.tcb.2008.03.003
  • Burnley P, Rahman M, Wang H, Zhang Z, Sun X, Zhuge Q, Su DM. Role of the p63-FoxN1 regulatory axis in thymic epithelial cell homeostasis during aging. Cell Death Dis 2013; 4:e932; http://dx.doi.org/10.1038/cddis.2013.460
  • Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP, Newbury-Ecob R, Hennekam RC, Van Buggenhout G, van Haeringen A, et al. Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 1999; 99(2):143-53; PMID:10535733; http://dx.doi.org/10.1016/S0092-8674(00)81646-3
  • Bertola DR, Kim CA, Albano LM, Scheffer H, Meijer R, van Bokhoven H. Molecular evidence that AEC syndrome and Rapp-Hodgkin syndrome are variable expression of a single genetic disorder. Clin Genet 2004; 66(1):79-80; PMID:15200513; http://dx.doi.org/10.1111/j.0009-9163.2004.00278.x
  • Bougeard G, Hadj-Rabia S, Faivre L, Sarafan-Vasseur N, Frébourg T. The Rapp-Hodgkin syndrome results from mutations of the TP63 gene. Eur J Hum Genet 2003; 11(9):700-4; PMID:12939657; http://dx.doi.org/10.1038/sj.ejhg.5201004
  • McGrath JA, Duijf PH, Doetsch V, Irvine AD, de Waal R, Vanmolkot KR, Wessagowit V, Kelly A, Atherton DJ, Griffiths WA, et al. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet 2001; 10(3):221-9; PMID:11159940; http://dx.doi.org/10.1093/hmg/10.3.221
  • Prontera P, Escande F, Cocchi G, Donti E, Martini A, Sensi A. An intermediate phenotype between Hay-Wells and Rapp-Hodgkin syndromes in a patient with a novel P63 mutation: confirmation of a variable phenotypic spectrum with a common aetiology. Genet Couns 2008; 19(4):397-402; PMID:19239083
  • van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, et al. p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet 2001; 69(3):481-92; PMID:11462173; http://dx.doi.org/10.1086/323123
  • van Bokhoven H, McKeon F. Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends Mol Med 2002; 8(3):133-9; PMID:11879774; http://dx.doi.org/10.1016/S1471-4914(01)02260-2
  • Crum CP, McKeon FD. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 2010; 5:349-71; PMID:20078223; http://dx.doi.org/10.1146/annurev-pathol-121808-102117
  • Chong PA, Lin H, Wrana JL, Forman-Kay JD. An expanded WW domain recognition motif revealed by the interaction between Smad7 and the E3 ubiquitin ligase Smurf2. J Biol Chem 2006; 281(25):17069-75; PMID:16641086; http://dx.doi.org/10.1074/jbc.M601493200
  • Ilsley JL, Sudol M, Winder SJ. The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal 2002; 14(3):183-9; PMID:11812645; http://dx.doi.org/10.1016/S0898-6568(01)00236-4
  • Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CS, Yu J, Hersi K, Raaijmakers J, Gish G, Mbamalu G, et al. WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol 2005; 25(16):7092-106; PMID:16055720; http://dx.doi.org/10.1128/MCB.25.16.7092-7106.2005
  • Lim SK, Orhant-Prioux M, Toy W, Tan KY, Lim YP. Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway. FASEB J 2011; 25(9):3004-18; PMID:21642474; http://dx.doi.org/10.1096/fj.10-169136
  • Chong PA, Lin H, Wrana JL, Forman-Kay JD. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity. Proc Natl Acad Sci USA 2010; 107(43):18404-9; http://dx.doi.org/10.1073/pnas.1003023107
  • Chan SW, Lim CJ, Huang C, Chong YF, Gunaratne HJ, Hogue KA, Blackstock WP, Harvey KF, Hong W. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene 2011; 30(5):600-10; PMID:20972459; http://dx.doi.org/10.1038/onc.2010.438
  • Macias MJ, Hyvönen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 1996; 382(6592):646-9; PMID:8757138; http://dx.doi.org/10.1038/382646a0
  • Macias MJ, Wiesner S, Sudol M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 2002; 513(1):30-7; PMID:11911877; http://dx.doi.org/10.1016/S0014-5793(01)03290-2
  • Karplus PA. Hydrophobicity regained. Protein Sci 1997; 6(6):1302-7; PMID:9194190; http://dx.doi.org/10.1002/pro.5560060618
  • Sudol M, Hunter T. NeW wrinkles for an old domain. Cell 2000; 103(7):1001-4; PMID:11163176; http://dx.doi.org/10.1016/S0092-8674(00)00203-8
  • Oberst A, Malatesta M, Aqeilan RI, Rossi M, Salomoni P, Murillas R, Sharma P, Kuehn MR, Oren M, Croce CM, Bernassola F, et al. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci USA 2007; 104(27):11280-5; http://dx.doi.org/10.1073/pnas.0701773104
  • Bakkers J, Camacho-Carvajal M, Nowak M, Kramer C, Danger B, Hammerschmidt M. Destabilization of DeltaNp63alpha by Nedd4-mediated ubiquitination and Ubc9-mediated sumoylation, and its implications on dorsoventral patterning of the zebrafish embryo. Cell Cycle 2005; 4(6):790-800; PMID:15908775; http://dx.doi.org/10.4161/cc.4.6.1694
  • Nicole Tsang YH, Wu XW, Lim JS, Wee Ong C, Salto-Tellez M, Ito K, Ito Y, Chen LF. Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer. Oncogene 2013; 32(12):1488-96; PMID:22580604; http://dx.doi.org/10.1038/onc.2012.178
  • Shi Z, Woody RW, Kallenbach NR. Is polyproline II a major backbone conformation in unfolded proteins? Adv Protein Chem 2002; 62:163-240; PMID:12418104; http://dx.doi.org/10.1016/S0065-3233(02)62008-X
  • Blanch EW, Morozova-Roche LA, Cochran DA, Doig AJ, Hecht L, Barron LD. Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. J Mol Biol 2000; 301(2):553-63; PMID:10926527; http://dx.doi.org/10.1006/jmbi.2000.3981
  • Creamer TP, Campbell MN. Determinants of the polyproline II helix from modeling studies. Adv Protein Chem 2002; 62:263-82; PMID:12418106; http://dx.doi.org/10.1016/S0065-3233(02)62010-8
  • Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, Capaci V, Jordan L, Quinlan P, Thompson A, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 2011; 20(1):79-91; PMID:21741598; http://dx.doi.org/10.1016/j.ccr.2011.06.004
  • Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH, Cesareni G, Melino G. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 2005; 24(4):836-48; PMID:15678106; http://dx.doi.org/10.1038/sj.emboj.7600444
  • Cicero DO, Falconi M, Candi E, Mele S, Cadot B, Di Venere A, Rufini S, Melino G, Desideri A. NMR structure of the p63 SAM domain and dynamical properties of G534V and T537P pathological mutants, identified in the AEC syndrome. Cell Biochem Biophys 2006; 44(3):475-89; PMID:16679535; http://dx.doi.org/10.1385/CBB:44:3:475
  • Bellomaria A, Barbato G, Melino G, Paci M, Melino S. Recognition of p63 by the E3 ligase ITCH: Effect of an ectodermal dysplasia mutant. Cell Cycle 2010; 9(18):3730-9; PMID:20855944; http://dx.doi.org/10.4161/cc.9.18.12933
  • Bellomaria A, Barbato G, Melino G, Paci M, Melino S. Recognition mechanism of p63 by the E3 ligase Itch: novel strategy in the study and inhibition of this interaction. Cell Cycle 2012; 11(19):3638-48; PMID:22935697; http://dx.doi.org/10.4161/cc.21918
  • Li Y, Zhou Z, Chen C. WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ 2008; 15(12):1941-51; PMID:18806757; http://dx.doi.org/10.1038/cdd.2008.134
  • Li C, Chang DL, Yang Z, Qi J, Liu R, He H, Li D, Xiao ZX. Pin1 modulates p63α protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis 2013; 4:e943; http://dx.doi.org/10.1038/cddis.2013.468
  • Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA, Croce CM, Melino G. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 2006; 103(34):12753-8; http://dx.doi.org/10.1073/pnas.0603449103
  • Rabanal F, Ludevid MD, Pons M, Giralt E. CD of proline-rich polypeptides: application to the study of the repetitive domain of maize glutelin-2. Biopolymers 1993; 33(7):1019-28; PMID:8343583; http://dx.doi.org/10.1002/bip.360330704
  • Zarrinpar A, Lim WA. Converging on proline: the mechanism of WW domain peptide recognition. Nat Struct Biol 2000; 7(8):611-3; http://dx.doi.org/10.1038/77891
  • Chen HI, Einbond A, Kwak SJ, Linn H, Koepf E, Peterson S, Kelly JW, Sudol M. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. J Biol Chem 1997; 272(27):17070-7; PMID:9202023; http://dx.doi.org/10.1074/jbc.272.27.17070
  • Koepf EK, Petrassi HM, Ratnaswamy G, Huff ME, Sudol M, Kelly JW. Characterization of the structure and function of W –>F WW domain variants: identification of a natively unfolded protein that folds upon ligand binding. Biochemistry 1999; 38(43):14338-51; PMID:10572009; http://dx.doi.org/10.1021/bi991105l
  • Koepf EK, Petrassi HM, Sudol M, Kelly JW. WW: an isolated three-stranded antiparallel beta-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Sci 1999; 8(4):841-53; PMID:10211830; http://dx.doi.org/10.1110/ps.8.4.841
  • Qin H, Pu HX, Li M, Ahmed S, Song J. Identification and structural mechanism for a novel interaction between a ubiquitin ligase WWP1 and Nogo-A, a key inhibitor for central nervous system regeneration. Biochemistry 2008; 47(51):13647-58; PMID:19035836; http://dx.doi.org/10.1021/bi8017976
  • Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis –trans isomerization as a molecular timer. Nat Chem Biol 2007; 3:619-629; PMID:17876319; http://dx.doi.org/10.1038/nchembio.2007.35
  • Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, Lu KP, Fischer G. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 1998; 37:5566-75; PMID:9548941; http://dx.doi.org/10.1021/bi973060z
  • Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, et al. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 2011; 286:5717-26; PMID:21159777; http://www.jbc.org/content/286/7/5717
  • Peschiaroli A, Scialpi F, Bernassola F, El Sherbini el S, Melino G. The E3 ubiquitin ligase WWP1 regulates ΔNp63-dependent transcription through Lys63 linkages. Biochem Biophys Res Commun 2010; 402(2):425-30; PMID:20951678; http://dx.doi.org/10.1016/j.bbrc.2010.10.050
  • Bhandari D, Robia SL, Marchese A. The E3 ubiquitin ligase atrophin interacting protein 4 binds directly to the chemokine receptor CXCR4 via a novel WW domain-mediated interaction. Mol Biol Cell 2009; 20:1324-39; PMID:19116316; http://dx.doi.org/10.1091/mbc.E08-03-0308
  • Suryaraja R, Anitha M, Anbarasu K, Kumari G, Mahalingam S. The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis 2013; 4:e565; http://dx.doi.org/10.1038/cddis.2013.91
  • Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002; 11(4):739-56; PMID:11910019; http://dx.doi.org/10.1110/ps.4210102
  • Woody RW, Sugeta H, Kodama TS. [Circular dichroism of proteins: recent developments in analysis and prediction]. Tanpakushitsu Kakusan Koso 1996; 41(1):56-69; PMID:8584742
  • Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 1998; 31(3):297-355; PMID:10384688; http://dx.doi.org/10.1017/S003358359800345X
  • Morris GM., Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 2009; 16: 2785-91; http://dx.doi.org/10.1002/jcc.21256
  • Trott O, Olson AJ. AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J Comput Chem 2010; 31: 455-461
  • Lu H, Li H, BanuBte SR, Shamima, Leow W, Liou Y-C. Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands. Pattern Recognition in Bioinformatics. Comput Sci 2009; 5780: 175-186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.