1,424
Views
20
CrossRef citations to date
0
Altmetric
Report

Dynamics of re-constitution of the human nuclear proteome after cell division is regulated by NLS-adjacent phosphorylation

, , , , , , , , , , , , & show all
Pages 3551-3564 | Received 04 Jun 2014, Accepted 28 Aug 2014, Published online: 10 Dec 2014

References

  • Gorlich D, Vogel F, Mills AD, Hartmann E, Laskey RA. Distinct functions for the two importin subunits in nuclear protein import. Nature 1995; 377:246-8; PMID:7675110; http://dx.doi.org/10.1038/377246a0
  • Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. Biochem Biokhimiia 2007; 72:1439-57; PMID:18282135; http://dx.doi.org/10.1134/S0006297907130032
  • Jans DA. The regulation of protein transport to the nucleus by phosphorylation. Biochem J 1995; 311(Pt 3):705-16; PMID:7487922
  • Jans DA, Hubner S. Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 1996; 76:651-85; PMID:8757785
  • Nardozzi JD, Lott K, Cingolani G. Phosphorylation meets nuclear import: a review. Cell Commun Signal: CCS 2010; 8:32; PMID:21182795; http://dx.doi.org/10.1186/1478-811X-8-32
  • Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Nat Acad Sci U S A 2009; 106:10171-6; PMID:19520826; http://dx.doi.org/10.1073/pnas.0900604106
  • Fontes MR, Teh T, Jans D, Brinkworth RI, Kobe B. Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J Biol Chem 2003; 278:27981-7; PMID:12695505; http://dx.doi.org/10.1074/jbc.M303275200
  • Kobe B, Kampmann T, Forwood JK, Listwan P, Brinkworth RI. Substrate specificity of protein kinases and computational prediction of substrates. Biochim Biophys Acta 2005; 1754:200-9; PMID:16172032; http://dx.doi.org/10.1016/j.bbapap.2005.07.036
  • Zhu G, Liu Y, Shaw S. Protein kinase specificity. A strategic collaboration between kinase peptide specificity and substrate recruitment. Cell Cycle 2005; 4:52-6; PMID:15655379; http://dx.doi.org/10.4161/cc.4.1.1353
  • Holmes JK, Solomon MJ. A predictive scale for evaluating cyclin-dependent kinase substrates. A comparison of p34cdc2 and p33cdk2. J Biol Chem 1996; 271:25240-6; PMID:8810285; http://dx.doi.org/10.1074/jbc.271.41.25240
  • Nigg EA. Cellular substrates of p34(cdc2) and its companion cyclin-dependent kinases. Trends Cell Biol 1993; 3:296-301; PMID:14731846; http://dx.doi.org/10.1016/0962-8924(93)90011-O
  • Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol: CB 1994; 4:973-82; PMID:7874496; http://dx.doi.org/10.1016/S0960-9822(00)00221-9
  • Ellis JJ, Kobe B. Predicting protein kinase specificity: Predikin update and performance in the DREAM4 challenge. PLoS One 2011; 6:e21169; PMID:21829434; http://dx.doi.org/10.1371/journal.pone.0021169
  • Brinkworth RI, Breinl RA, Kobe B. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 2003; 100:74-9; PMID:12502784; http://dx.doi.org/10.1073/pnas.0134224100
  • Kobe B, Boden M. Computational modelling of linear motif-mediated protein interactions. Curr Topics Med Chem 2012; 12:1553-61; PMID:22827524; http://dx.doi.org/10.2174/156802612802652439
  • Mehdi AM, Sehgal MS, Kobe B, Bailey TL, Boden M. A probabilistic model of nuclear import of proteins. Bioinformatics 2011; 27:1239-46; PMID:21372083; http://dx.doi.org/10.1093/bioinformatics/btr121
  • Saunders NF, Brinkworth RI, Huber T, Kemp BE, Kobe B. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics 2008; 9:245; PMID:18501020; http://dx.doi.org/10.1186/1471-2105-9-245
  • Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, Cantley LC. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 2001; 19:348-53.; http://dx.doi.org/10.1038/86737
  • Ding R, West RR, Morphew DM, Oakley BR, McIntosh JR. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Cell 1997; 8:1461-79; PMID:9285819; http://dx.doi.org/10.1091/mbc.8.8.1461
  • Swanson JA, McNeil PL. Nuclear reassembly excludes large macromolecules. Science 1987; 238:548-50; PMID:2443981; http://dx.doi.org/10.1126/science.2443981
  • Vertessy BG, Toth J. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc Chem Res 2009; 42:97-106; PMID:18837522; http://dx.doi.org/10.1021/ar800114w
  • Rona G, Marfori M, Borsos M, Scheer I, Takacs E, Toth J, Babos F, Magyar A, Erdei A, Bozoky Z, et al. Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights. Acta crystallogr Section D, Biol Crystallogr 2013; 69:2495-505; PMID:24311590; http://dx.doi.org/10.1107/S0907444913023354
  • Marfori M, Mynott A, Ellis JJ, Mehdi AM, Saunders NF, Curmi PM, Forwood JK, Boden M, Kobe B. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta 2011; 1813:1562-77; PMID:20977914; http://dx.doi.org/10.1016/j.bbamcr.2010.10.013
  • Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes. Cell division 2010; 5:11; PMID:20465793; http://dx.doi.org/10.1186/1747-1028-5-11
  • Saunders NF, Kobe B. The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information. Nucl Acids Res 2008; 36:W286-90; PMID:18477637; http://dx.doi.org/10.1093/nar/gkn279
  • Geymonat M, Spanos A, Wells GP, Smerdon SJ, Sedgwick SG. Clb6/Cdc28 and Cdc14 regulate phosphorylation status and cellular localization of Swi6. Mol Cell Biol 2004; 24:2277-85; PMID:14993267; http://dx.doi.org/10.1128/MCB.24.6.2277-2285.2004
  • Harreman MT, Kline TM, Milford HG, Harben MB, Hodel AE, Corbett AH. Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J Biol Chem 2004; 279:20613-21; PMID:14998990; http://dx.doi.org/10.1074/jbc.M401720200
  • Sidorova JM, Mikesell GE, Breeden LL. Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol Biol Cell 1995; 6:1641-58; PMID:8590795; http://dx.doi.org/10.1091/mbc.6.12.1641
  • Kosugi S, Hasebe M, Entani T, Takayama S, Tomita M, Yanagawa H. Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. Chem Biol 2008; 15:940-9; PMID:18804031; http://dx.doi.org/10.1016/j.chembiol.2008.07.019
  • Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Nat Acad Sci U S A 2008; 105:10762-7; PMID:18669648; http://dx.doi.org/10.1073/pnas.0805139105
  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 2010; 3:ra3; PMID:20068231; http://dx.doi.org/10.1126/scisignal.2000475
  • Stephen AG, Trausch-Azar JS, Handley-Gearhart PM, Ciechanover A, Schwartz AL. Identification of a region within the ubiquitin-activating enzyme required for nuclear targeting and phosphorylation. J Biol Chem 1997; 272:10895-903; PMID:9099746; http://dx.doi.org/10.1074/jbc.272.16.10895
  • Lee MK, Tong WM, Wang ZQ, Sabapathy K. Serine 312 phosphorylation is dispensable for wild-type p53 functions in vivo. Cell Death Differ 2010; 18:214-21; PMID:20671749; http://dx.doi.org/10.1038/cdd.2010.90
  • Otterlei M, Haug T, Nagelhus TA, Slupphaug G, Lindmo T, Krokan HE. Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucl Acids Res 1998; 26:4611-7; PMID:9753728; http://dx.doi.org/10.1093/nar/26.20.4611
  • Fiser A, Vertessy BG. Altered subunit communication in subfamilies of trimeric dUTPases. Biochem Biophys Res Commun 2000; 279:534-42; PMID:11118321; http://dx.doi.org/10.1006/bbrc.2000.3994
  • Mustafi D, Bekesi A, Vertessy BG, Makinen MW. Catalytic and structural role of the metal ion in dUTP pyrophosphatase. Proc Nat Acad Sci U S A 2003; 100:5670-5; PMID:12721364; http://dx.doi.org/10.1073/pnas.1031504100
  • Vertessy BG, Persson R, Rosengren AM, Zeppezauer M, Nyman PO. Specific derivatization of the active site tyrosine in dUTPase perturbs ligand binding to the active site. Biochem Biophys Res Commun 1996; 219:294-300; PMID:8604980; http://dx.doi.org/10.1006/bbrc.1996.0226
  • Kovari J, Barabas O, Varga B, Bekesi A, Tolgyesi F, Fidy J, Nagy J, Vertessy BG. Methylene substitution at the alpha-beta bridging position within the phosphate chain of dUDP profoundly perturbs ligand accommodation into the dUTPase active site. Proteins 2008; 71:308-19; PMID:17932923; http://dx.doi.org/10.1002/prot.21757
  • Nemeth-Pongracz V, Barabas O, Fuxreiter M, Simon I, Pichova I, Rumlova M, Zabranska H, Svergun D, Petoukhov M, Harmat V, et al. Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins. Nucl Acids Res 2007; 35:495-505; PMID:17169987; http://dx.doi.org/10.1093/nar/gkl1074
  • Bekesi A, Zagyva I, Hunyadi-Gulyas E, Pongracz V, Kovari J, Nagy AO, Erdei A, Medzihradszky KF, Vertessy BG. Developmental regulation of dUTPase in Drosophila melanogaster. J Biol Chem 2004; 279:22362-70; PMID:14996835; http://dx.doi.org/10.1074/jbc.M313647200
  • Kovari J, Barabas O, Takacs E, Bekesi A, Dubrovay Z, Pongracz V, Zagyva I, Imre T, Szabo P, Vertessy BG. Altered active site flexibility and a structural metal-binding site in eukaryotic dUTPase: kinetic characterization, folding, and crystallographic studies of the homotrimeric Drosophila enzyme. J Biol Chem 2004; 279:17932-44; PMID:14724274; http://dx.doi.org/10.1074/jbc.M313643200
  • Lari SU, Chen CY, Vertessy BG, Morre J, Bennett SE. Quantitative determination of uracil residues in Escherichia coli DNA: Contribution of ung, dug, and dut genes to uracil avoidance. DNA Repair 2006; 5:1407-20; PMID:16908222; http://dx.doi.org/10.1016/j.dnarep.2006.06.009
  • Merenyi G, Kovari J, Toth J, Takacs E, Zagyva I, Erdei A, Vertessy BG. Cellular response to efficient dUTPase RNAi silencing in stable HeLa cell lines perturbs expression levels of genes involved in thymidylate metabolism. Nucleosides Nucleotides Nucleic Acids 2011; 30:369-90; PMID:21780905; http://dx.doi.org/10.1080/15257770.2011.582849
  • Muha V, Horvath A, Bekesi A, Pukancsik M, Hodoscsek B, Merenyi G, Rona G, Batki J, Kiss I, Jankovics F, et al. Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement. PLoS Genet 2012; 8:e1002738.
  • Pecsi I, Hirmondo R, Brown AC, Lopata A, Parish T, Vertessy BG, Toth J. The dUTPase enzyme is essential in Mycobacterium smegmatis. PLoS One 2012; 7:e37461; PMID:22655049; http://dx.doi.org/10.1371/journal.pone.0037461
  • Ladner RD, Carr SA, Huddleston MJ, McNulty DE, Caradonna SJ. Identification of a consensus cyclin-dependent kinase phosphorylation site unique to the nuclear form of human deoxyuridine triphosphate nucleotidohydrolase. J Biol Chem 1996; 271:7752-7; PMID:8631817; http://dx.doi.org/10.1074/jbc.271.13.7752
  • Toth J, Varga B, Kovacs M, Malnasi-Csizmadia A, Vertessy BG. Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme. J Biol Chem 2007; 282:33572-82; PMID:17848562; http://dx.doi.org/10.1074/jbc.M706230200
  • Tinkelenberg BA, Fazzone W, Lynch FJ, Ladner RD. Identification of sequence determinants of human nuclear dUTPase isoform localization. Exp Cell Res 2003; 287:39-46; PMID:12799180; http://dx.doi.org/10.1016/S0014-4827(03)00048-X
  • MacFarlane AJ, Anderson DD, Flodby P, Perry CA, Allen RH, Stabler SP, Stover PJ. Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA. J Biol Chem 2012; 286:44015-22; http://dx.doi.org/10.1074/jbc.M111.307629
  • Anderson DD, Eom JY, Stover PJ. Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J Biol Chem 2012; 287:4790-9; PMID:22194612; http://dx.doi.org/10.1074/jbc.M111.302174
  • Woeller CF, Anderson DD, Szebenyi DM, Stover PJ. Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J Biol Chem 2007; 282:17623-31; PMID:17446168; http://dx.doi.org/10.1074/jbc.M702526200
  • Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 2012; 287:7051-62; PMID:22235121; http://dx.doi.org/10.1074/jbc.M111.333120
  • Niida H, Shimada M, Murakami H, Nakanishi M. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci 2010; 101:2505-9; PMID:20874841; http://dx.doi.org/10.1111/j.1349-7006.2010.01719.x
  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316:1160-6; PMID:17525332; http://dx.doi.org/10.1126/science.1140321
  • Langerak P, Russell P. Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2012; 366:3562-71; http://dx.doi.org/10.1098/rstb.2011.0070
  • Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, et al. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 2008; 15:657-67; PMID:19000832; http://dx.doi.org/10.1016/j.devcel.2008.08.020
  • Fulcher AJ, Roth DM, Fatima S, Alvisi G, Jans DA. The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. FASEB J 2010; 24:1454-66; PMID:20040518; http://dx.doi.org/10.1096/fj.09-136564
  • Uniprot C. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucl Acids Res 2012; 40:D71-5; PMID:22102590; http://dx.doi.org/10.1093/nar/gkr981
  • Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 2009; 284:478-85; PMID:19001369; http://dx.doi.org/10.1074/jbc.M807017200
  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucl Acids Res 2006; 34:D535-9; PMID:16381927; http://dx.doi.org/10.1093/nar/gkj109
  • Sorg G, Stamminger T. Mapping of nuclear localization signals by simultaneous fusion to green fluorescent protein and to beta-galactosidase. Biotechniques 1999; 26:858-62; PMID:10337476
  • Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. Nucl Acids Res 2011; 39:D253-60; PMID:21081558; http://dx.doi.org/10.1093/nar/gkq1159
  • Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 2007; 8:R250; PMID:18039369; http://dx.doi.org/10.1186/gb-2007-8-11-r250
  • Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008; 9:616-27; PMID:18594563; http://dx.doi.org/10.1038/nrm2450
  • Kim H, Chen J, Yu X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 2007; 316:1202-5; PMID:17525342; http://dx.doi.org/10.1126/science.1139621
  • Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 2007; 316:1198-202; PMID:17525341; http://dx.doi.org/10.1126/science.1139516
  • Guerrero-Santoro J, Kapetanaki MG, Hsieh CL, Gorbachinsky I, Levine AS, Rapic-Otrin V. The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res 2008; 68:5014-22; PMID:18593899; http://dx.doi.org/10.1158/0008-5472.CAN-07-6162
  • Ku WC, Chiu SK, Chen YJ, Huang HH, Wu WG. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2. Mol Cell Proteomics 2009; 8:2034-50; PMID:19505873; http://dx.doi.org/10.1074/mcp.M900013-MCP200
  • Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011; 30:249-62; PMID:21131905; http://dx.doi.org/10.1038/emboj.2010.318
  • Liu H, Hew HC, Lu ZG, Yamaguchi T, Miki Y, Yoshida K. DNA damage signalling recruits RREB-1 to the p53 tumour suppressor promoter. Biochem J 2009; 422:543-51; PMID:19558368; http://dx.doi.org/10.1042/BJ20090342
  • Thiagalingam A, De Bustros A, Borges M, Jasti R, Compton D, Diamond L, Mabry M, Ball DW, Baylin SB, Nelkin BD. RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas. Mol Cell Biol 1996; 16:5335-45; PMID:8816445
  • Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene 2004; 23:4225-31; PMID:15156177; http://dx.doi.org/10.1038/sj.onc.1207118
  • Egawa T, Littman DR. Transcription factor AP4 modulates reversible and epigenetic silencing of the Cd4 gene. Proc Nat Acad Sci U S A 2011; 108:14873-8; PMID:21873191; http://dx.doi.org/10.1073/pnas.1112293108
  • Imai K, Okamoto T. Transcriptional repression of human immunodeficiency virus type 1 by AP-4. J Biol Chem 2006; 281:12495-505; PMID:16540471; http://dx.doi.org/10.1074/jbc.M511773200
  • Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010; 29:2135-46; PMID:20168299; http://dx.doi.org/10.1038/emboj.2010.17
  • Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I. NoRC–a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001; 20:4892-900; PMID:11532953; http://dx.doi.org/10.1093/emboj/20.17.4892
  • Jia S, Kobayashi R, Grewal SI. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol 2005; 7:1007-13; PMID:16127433; http://dx.doi.org/10.1038/ncb1300
  • Blencowe BJ, Bauren G, Eldridge AG, Issner R, Nickerson JA, Rosonina E, Sharp PA. The SRm160/300 splicing coactivator subunits. RNA 2000; 6:111-20; PMID:10668804; http://dx.doi.org/10.1017/S1355838200991982
  • Yang L, Li N, Wang C, Yu Y, Yuan L, Zhang M, Cao X. Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells. J Biol Chem 2004; 279:11639-48; PMID:14684736; http://dx.doi.org/10.1074/jbc.M312895200
  • Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C, Gao G, Liu Q, Chen B, Shao C, et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem 2009; 284:33320-32; PMID:19801544; http://dx.doi.org/10.1074/jbc.M109.050427
  • Miranda-Carboni GA, Krum SA, Yee K, Nava M, Deng QE, Pervin S, Collado-Hidalgo A, Galic Z, Zack JA, Nakayama K, et al. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors. Genes Dev 2008; 22:3121-34; PMID:19056892; http://dx.doi.org/10.1101/gad.1692808
  • Higa LA, Yang X, Zheng J, Banks D, Wu M, Ghosh P, Sun H, Zhang H. Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle 2006; 5:71-7; PMID:16322693; http://dx.doi.org/10.4161/cc.5.1.2266
  • Li HL, Wang TS, Li XY, Li N, Huang DZ, Chen Q, Ba Y. Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells. Chin Med J (Engl) 2007; 120:905-9; PMID:17543181
  • Kondo T, Sheets PL, Zopf DA, Aloor HL, Cummins TR, Chan RJ, Hashino E. Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells. Proc Nat Acad Sci U S A 2008; 105:5780-5; PMID:18391221; http://dx.doi.org/10.1073/pnas.0708704105
  • Worman HJ. Nuclear lamins and laminopathies. J Pathol 2011; 226:316-25; PMID:21953297; http://dx.doi.org/10.1002/path.2999
  • Dittmer TA, Misteli T. The lamin protein family. Genome Biol 2011; 12:222; PMID:21639948; http://dx.doi.org/10.1186/gb-2011-12-5-222

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.