1,432
Views
12
CrossRef citations to date
0
Altmetric
Report

Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs

, , , , , & show all
Pages 1558-1571 | Received 07 Aug 2014, Accepted 11 Sep 2014, Published online: 21 Nov 2014

References

  • Strachan T RA. Human Molecular Genetics. New York: Wiley-Liss, 1999:255-95
  • Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 1996; 6:743-8; PMID:8994846; http://dx.doi.org/10.1016/S0959-437X(96)80030-X
  • Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10:691-703; PMID:19763152; http://dx.doi.org/10.1038/nrg2640
  • Singer MF. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 1982; 28:433-4; PMID:6280868; http://dx.doi.org/10.1016/0092-8674(82)90194-5
  • Ullu E, Tschudi C. Alu sequences are processed 7SL RNA genes. Nature 1984; 312:171-2; PMID:6209580; http://dx.doi.org/10.1038/312171a0
  • Burns KH, Boeke JD. Human transposon tectonics. Cell 2012; 149:740-52; PMID:22579280; http://dx.doi.org/10.1016/j.cell.2012.04.019
  • Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, et al. Inhibition of activated pericentromeric SINEAlu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30; PMID:21862875; http://dx.doi.org/10.4161/cc.10.17.17543
  • Schmitz J. SINEs as driving forces in genome evolution. Genome Dyn 2012; 7:92-107; PMID:22759815; http://dx.doi.org/10.1159/000337117
  • Noma K, Cam HP, Maraia RJ, Grewal SI. A role for TFIIIC transcription factor complex in genome organization. Cell 2006; 125:859-72; PMID:16751097; http://dx.doi.org/10.1016/j.cell.2006.04.028
  • Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 2011; 89:495-504; PMID:21916613; http://dx.doi.org/10.1139/o11-046
  • Hellmann-Blumberg U, Hintz MF, Gatewood JM, Schmid CW. Developmental differences in methylation of human Alu repeats. Mol Cell Biol 1993; 13:4523-30; PMID:8336699
  • Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J 1993; 12:1141-51; PMID:8384552
  • Kondo Y, Issa JP. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J Biol Chem 2003; 278:27658-62; PMID:12724318; http://dx.doi.org/10.1074/jbc.M304072200
  • Englander EW, Howard BH. Nucleosome positioning by human Alu elements in chromatin. J Biol Chem 1995; 270:10091-6; PMID:7730313; http://dx.doi.org/10.1074/jbc.270.17.10091
  • Englander EW, Wolffe AP, Howard BH. Nucleosome interactions with a human Alu element. Transcriptional repression and effects of template methylation. J Biol Chem 1993; 268:19565-73; PMID:8366099
  • Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 2004; 14:1719-25; PMID:15342557; http://dx.doi.org/10.1101/gr.2855504
  • Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 2003; 300:1288-91; PMID:12764196; http://dx.doi.org/10.1126/science.1082588
  • Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29:499-509; PMID:18313387; http://dx.doi.org/10.1016/j.molcel.2007.12.013
  • Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99; PMID:20890107; http://dx.doi.org/10.4161/cc.9.18.13203
  • Oler AJ, Traina-Dorge S, Derbes RS, Canella D, Cairns BR, Roy-Engel AM. Alu expression in human cell lines and their retrotranspositional potential. Mob DNA 2012; 3:11; PMID:22716230; http://dx.doi.org/10.1186/1759-8753-3-11
  • Ichiyanagi K, Li Y, Watanabe T, Ichiyanagi T, Fukuda K, Kitayama J, Yamamoto Y, Kuramochi-Miyagawa S, Nakano T, Yabuta Y, et al. Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development. Genome Res 2011; 21:2058-66; PMID:22042642; http://dx.doi.org/10.1101/gr.123679.111
  • Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007; 23:183-91; PMID:17331616; http://dx.doi.org/10.1016/j.tig.2007.02.006
  • Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004; 431:96-9; http://dx.doi.org/10.1038/nature02886
  • Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 2009; 37:7268-80; PMID:19783824; http://dx.doi.org/10.1093/nar/gkp787
  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. Molecular Cell Biology. New York: W. H. Freeman and Company, 2000; p. 525.
  • Ciesla M, Boguta M. Regulation of RNA polymerase III transcription by Maf1 protein. Acta Biochim Pol 2008; 55:215-25; PMID:18560610
  • Goodfellow SJ, Graham EL, Kantidakis T, Marshall L, Coppins BA, Oficjalska-Pham D, Gérard M, Lefebvre O, White RJ. Regulation of RNA polymerase III transcription by Maf1 in mammalian cells. J Mol Biol 2008; 378:481-91; PMID:18377933; http://dx.doi.org/10.1016/j.jmb.2008.02.060
  • Ichiyanagi K. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs. Genes Genet Syst 2013; 88:19-29; PMID:23676707
  • Macia A, Munoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G, Marchal JA, Badge RM, Garcia-Perez JL. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 2011; 31:300-16; PMID:21041477; http://dx.doi.org/10.1128/MCB.00561-10
  • Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ, Cassiday PA, Nelson CA, Hagedorn CH, Graves BJ, et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 2010; 17:620-8; PMID:20418882; http://dx.doi.org/10.1038/nsmb.1801
  • Xie H, Wang M, Bonaldo Mde F, Smith C, Rajaram V, Goldman S, Tomita T, Soares MB. High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum. Nucleic Acids Res 2009; 37:4331-40; PMID:19458156; http://dx.doi.org/10.1093/nar/gkp393
  • Perez-Stable C, Ayres TM, Shen CK. Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Nat Acad Sci U S A 1984; 81:5291-5; PMID:6089189; http://dx.doi.org/10.1073/pnas.81.17.5291
  • Kim C, Rubin CM, Schmid CW. Genome-wide chromatin remodeling modulates the Alu heat shock response. Gene 2001; 276:127-33; PMID:11591479; http://dx.doi.org/10.1016/S0378-1119(01)00639-4
  • Deissler H, Wilm M, Genc B, Schmitz B, Ternes T, Naumann F, Mann M, Doerfler W. Rapid protein sequencing by tandem mass spectrometry and cDNA cloning of p20-CGGBP. A novel protein that binds to the unstable triplet repeat 5′-d(CGG)n-3′ in the human FMR1 gene. J Biol Chem 1997; 272:16761-8; PMID:9201980; http://dx.doi.org/10.1074/jbc.272.27.16761
  • Singh U, Maturi V, Jones RE, Paulsson Y, Baird DM, Westermark B. CGGBP1 phosphorylation constitutes a telomere-protection signal. Cell Cycle 2013; 13:96-105; PMID:24196442; http://dx.doi.org/10.4161/cc.26813
  • Muller-Hartmann H, Deissler H, Naumann F, Schmitz B, Schroer J, Doerfler W. The human 20-kDa 5′-(CGG)(n)-3′-binding protein is targeted to the nucleus and\ affects the activity of the FMR1 promoter. J Biol Chem 2000; 275:6447-52; PMID:10692448; http://dx.doi.org/10.1074/jbc.275.9.6447
  • Naumann F, Remus R, Schmitz B, Doerfler W. Gene structure and expression of the 5′-(CGG)(n)-3′-binding protein (CGGBP1). Genomics 2004; 83:106-18; PMID:14667814; http://dx.doi.org/10.1016/S0888-7543(03)00212-X
  • Singh U, Bongcam-Rudloff E, Westermark B. A DNA sequence directed mutual transcription regulation of HSF1 and NFIX involves\ novel heat sensitive protein interactions. PLoS One 2009; 4:e5050; PMID:19337383; http://dx.doi.org/10.1371/journal.pone.0005050
  • Singh U, Roswall P, Uhrbom L, Westermark B. CGGBP1 regulates cell cycle in cancer cells. BMC Mol Biol 2011; 12:28; PMID:21733196; http://dx.doi.org/10.1186/1471-2199-12-28
  • Singh U, Westermark B. CGGBP1 is a nuclear and midbody protein regulating abscission. Exp Cell Res 2011; 317:143-50; PMID:20832400; http://dx.doi.org/10.1016/j.yexcr.2010.08.019
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009; 37:W202-8; PMID:19458158; http://dx.doi.org/10.1093/nar/gkp335
  • Tempel S. Using and understanding RepeatMasker. Methods Mol Biol 2012; 859:29-51; PMID:22367864; http://dx.doi.org/10.1007/978-1-61779-603-6_2
  • Enroth S, Andersson R, Wadelius C, Komorowski J. SICTIN: Rapid footprinting of massively parallel sequencing data. BioData Min 2010; 3:4; PMID:20707885; http://dx.doi.org/10.1186/1756-0381-3-4
  • Marullo M, Zuccato C, Mariotti C, Lahiri N, Tabrizi SJ, Di Donato S, Cattaneo E. Expressed Alu repeats as a novel, reliable tool for normalization of real-time quantitative RT-PCR data. Genome Biol 2010; 11:R9; PMID:20109193; http://dx.doi.org/10.1186/gb-2010-11-1-r9
  • Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, Toedt G, Uyar B, Seiler M, Budd A, et al. ELM–the database of eukaryotic linear motifs. Nucleic Acids Res 2012; 40:D242-51; PMID:22110040; http://dx.doi.org/10.1093/nar/gkr1064
  • Simossis VA, Heringa J. PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 2005; 33:W289-94; PMID:15980472; http://dx.doi.org/10.1093/nar/gki390
  • Leemann-Zakaryan RP, Pahlich S, Grossenbacher D, Gehring H. Tyrosine phosphorylation in the C-terminal nuclear localization and retention signal (C-NLS) of the EWS protein. Sarcoma 2011; 2011:218483; PMID:21647358; http://dx.doi.org/10.1155/2011/218483
  • Yonaha M, Chibazakura T, Kitajima S, Yasukochi Y. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity. Nucleic Acids Res 1995; 23:4050-4; PMID:7479063; http://dx.doi.org/10.1093/nar/23.20.4050
  • Korenberg JR, Rykowski MC. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 1988; 53:391-400; PMID:3365767; http://dx.doi.org/10.1016/0092-8674(88)90159-6
  • Chellappa K, Jankova L, Schnabl JM, Pan S, Brelivet Y, Fung CL, Chan C, Dent OF, Clarke SJ, Robertson GR, et al. Src tyrosine kinase phosphorylation of nuclear receptor HNF4alpha correlates with isoform-specific loss of HNF4alpha in human colon cancer. Proc Natl Acad Sci U S A 2012; 109:2302-7; PMID:22308320; http://dx.doi.org/10.1073/pnas.1106799109
  • Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA. Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 2004; 108:665-71; PMID:14696092; http://dx.doi.org/10.1002/ijc.11619
  • Dey-Guha I, Malik N, Lesourne R, Love PE, Westphal H. Tyrosine phosphorylation controls nuclear localization and transcriptional activity of Ssdp1 in mammalian cells. J Cell Biochem 2008; 103:1856-65; PMID:18080319; http://dx.doi.org/10.1002/jcb.21576
  • Gouilleux F, Wakao H, Mundt M, Groner B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 1994; 13:4361-9; PMID:7925280
  • Humphries MJ, Ohm AM, Schaack J, Adwan TS, Reyland ME. Tyrosine phosphorylation regulates nuclear translocation of PKCdelta. Oncogene 2008; 27:3045-53; PMID:18059334; http://dx.doi.org/10.1038/sj.onc.1210967
  • Madeo F, Schlauer J, Zischka H, Mecke D, Frohlich KU. Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p. Mol Biol Cell 1998; 9:131-41; PMID:9436996; http://dx.doi.org/10.1091/mbc.9.1.131
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841-2; PMID:20110278; http://dx.doi.org/10.1093/bioinformatics/btq033
  • Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K. REAP: a two minute cell fractionation method. BMC Res Notes 2010; 3:294; PMID:21067583; http://dx.doi.org/10.1186/1756-0500-3-294
  • Nishihara A, Hanai J, Imamura T, Miyazono K, Kawabata M. E1A inhibits transforming growth factor-beta signaling through binding to Smad proteins. J Biol Chem 1999; 274:28716-23; PMID:10497242; http://dx.doi.org/10.1074/jbc.274.40.28716