1,245
Views
15
CrossRef citations to date
0
Altmetric
EXTRA VIEW

Guilty as CHARGED: p53's expanding role in disease

&
Pages 3798-3807 | Received 29 Sep 2014, Accepted 07 Nov 2014, Published online: 03 Jan 2015

References

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356:215-21; PMID:1552940; http://dx.doi.org/10.1038/356215a0
  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4:1-7; PMID:7922305
  • Purdie C, Harrison D, Peter A, Dobbie L, White S, Howie S, Salter D, Bird C, Wyllie A, Hooper M, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994; 9:603-9; PMID:8290271
  • Soussi T. Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and TP53 mutation spectrum analysis. Biochim Biophys Acta 2011; 1816:199-208; PMID:21791238; http://dx.doi.org/10.1016/j.bbcan.2011.07.003
  • Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev 2002; 2:594-604; PMID:12154352
  • Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell 2009; 137:413-31; PMID:19410540; http://dx.doi.org/10.1016/j.cell.2009.04.037
  • Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature 2009; 458:1127-30; PMID:19407794; http://dx.doi.org/10.1038/nature07986
  • Brady CA, Attardi LD. p53 at a glance. J Cell Sci 2010; 123:2527-32; PMID:20940128; http://dx.doi.org/10.1242/jcs.064501
  • Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun 2005; 331:761-77; PMID:15865932; http://dx.doi.org/10.1016/j.bbrc.2005.03.149
  • Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev 2003; 3:117-29; PMID:12563311
  • Migliorini D, Denchi EL, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG, Marine J-C. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 2002; 22:5527-38; PMID:12101245; http://dx.doi.org/10.1128/MCB.22.15.5527-5538.2002
  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29:92-5; PMID:11528400; http://dx.doi.org/10.1038/ng714
  • Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378:203-6; PMID:7477326; http://dx.doi.org/10.1038/378203a0
  • Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP, Ramirez-Solis R, Sands AT, et al. mdmx is a negative regulator of p53 activity in vivo. Cancer Res 2002; 62:3221-5; PMID:12036937
  • Chavez-Reyes A, Parant JM, Amelse LL, de Oca Luna RM, Korsmeyer SJ, Lozano G. Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Res 2003; 63:8664-9; PMID:14695178
  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378:206-8; PMID:7477327; http://dx.doi.org/10.1038/378206a0
  • Chen J, Marechal V, Levine AJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 1993; 13:4107-14; PMID:7686617
  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69:1237-45; PMID:1535557; http://dx.doi.org/10.1016/0092-8674(92)90644-R
  • Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 2006; 13:927-34; PMID:16543935; http://dx.doi.org/10.1038/sj.cdd.4401912
  • Shadfan M, Lopez-Pajares V, Yuan Z-M. MDM2 and MDMX: alone and together in regulation of p53. Transla Cancer Res 2012; 1:88-99; PMID:23002429
  • Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20:299-309; PMID:20172729; http://dx.doi.org/10.1016/j.tcb.2010.01.009
  • Grier JD, Xiong S, Elizondo-Fraire AC, Parant JM, Lozano G. Tissue-Specific Differences of p53 Inhibition by Mdm2 and Mdm4. Mol Cell Biol 2006; 26:192-8; PMID:16354690; http://dx.doi.org/10.1128/MCB.26.1.192-198.2006
  • Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN. Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling. J Cell Biol 2006; 172:909-21; PMID:16533949
  • Maetens M, Doumont G, Clercq SD, Francoz S, Froment P, Bellefroid E, Klingmuller U, Lozano G, Marine J-C. Distinct roles of Mdm2 and Mdm4 in red cell production. Blood 2007; 109:2630-3; PMID:17105817; http://dx.doi.org/10.1182/blood-2006-03-013656
  • Zhang Q, He X, Chen L, Zhang C, Gao X, Yang Z, Liu G. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. J Pathol 2012; 228:416-28; PMID:22821713; http://dx.doi.org/10.1002/path.4077
  • Rinon A, Molchadsky A, Nathan E, Yovel G, Rotter V, Sarig R, Tzahor E. p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Dev (Cambridge, England) 2011; 138:1827-38; PMID:21447558; http://dx.doi.org/10.1242/dev.053645
  • Hilliard SA, Yao X, El-Dahr SS. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol 2014; 387:1-14; PMID:24440154; http://dx.doi.org/10.1016/j.ydbio.2014.01.009
  • Gannon HS, Donehower LA, Lyle S, Jones SN. Mdm2–p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin. Dev Biol 2011; 353:1-9; PMID:21334322
  • Xiong S, Van Pelt CS, Elizondo-Fraire AC, Liu G, Lozano G. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci U S A 2006; 103:3226-31
  • Brady Colleen A, Jiang D, Mello Stephano S, Johnson Thomas M, Jarvis Lesley A, Kozak Margaret M, Broz Daniela K, Basak S, Park Eunice J, McLaughlin Margaret E, et al. Distinct p53 transcriptional programs dictate acute dna-damage responses and tumor suppression. Cell 2011; 145:571-83; PMID:21565614; http://dx.doi.org/10.1016/j.cell.2011.03.035
  • Johnson TM, Hammond EM, Giaccia A, Attardi LD. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 2005; 37:145-52; PMID:15654339; http://dx.doi.org/10.1038/ng1498
  • Candau R, Scolnick DM, Darpino P, Ying CY, Halazonetis TD, Bergera SL. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 1997; 15:807-16; PMID:9266967; http://dx.doi.org/10.1038/sj.onc.1201244
  • Zhu J, Zhou W, Jiang J, Chen X. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J Biol Chem 1998; 273:13030-6; PMID:9582339; http://dx.doi.org/10.1074/jbc.273.21.13030
  • Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 1999; 18:2405-10; PMID:10327062; http://dx.doi.org/10.1038/sj.onc.1202539
  • Van Nostrand JL, Brady CA, Jung H, Fuentes DR, Kozak MM, Johnson TM, Lin C-Y, Lin C-J, Swiderski DL, Vogel H, et al. Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature 2014; 514:228-32; PMID:25119037; http://dx.doi.org/10.1038/nature13585
  • Jiang D, Brady CA, Johnson TM, Lee EY, Park EJ, Scott MP, Attardi LD. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci 2011; 108:17123-8
  • Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 1994; 8:1235-46; PMID:7926727; http://dx.doi.org/10.1101/gad.8.10.1235
  • Schwenk F, Baron U, Rajewsky K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 1995; 23:5080-1; PMID:8559668; http://dx.doi.org/10.1093/nar/23.24.5080
  • Blake KD, Davenport SLH, Hall BD, Hefner MA, Pagon RA, Williams MS, Lin AE, Graham JM Jr. CHARGE association: an update and review for the primary pediatrician. Clinical Pediatrics 1998; 37:159-73; PMID:9545604; http://dx.doi.org/10.1177/000992289803700302
  • Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet Part A 2005; 133A:306-8; PMID:15666308; http://dx.doi.org/10.1002/ajmg.a.30559
  • Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, Hofstra RMW, van Ravenswaaij-Arts CMA, Hoefsloot LH. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 2012; 33:1149-60; PMID:22461308; http://dx.doi.org/10.1002/humu.22086
  • Bergman JEH, Janssen N, Hoefsloot LH, Jongmans MCJ, Hofstra RMW, van Ravenswaaij-Arts CMA. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet 2011; 48:334-42; PMID:21378379; http://dx.doi.org/10.1136/jmg.2010.087106
  • Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hu Mol Genet 2005; 14:3463-76; PMID:16207732; http://dx.doi.org/10.1093/hmg/ddi375
  • Hurd E, Capers P, Blauwkamp M, Adams M, Raphael Y, Poucher H, Martin D. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome 2007; 18:94-104; PMID:17334657; http://dx.doi.org/10.1007/s00335-006-0107-6
  • Hurd EA, Adams ME, Layman WS, Swiderski DL, Beyer LA, Halsey KE, Benson JM, Gong TW, Dolan DF, Raphael Y, et al. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res 2011; 282:184-95; PMID:21875659; http://dx.doi.org/10.1016/j.heares.2011.08.005
  • Sanlaville D, Etchevers HC, Gonzales M, Martinovic J, Clément-Ziza M, Delezoide A-L, Aubry M-C, Pelet A, Chemouny S, Cruaud C, et al. Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 2006; 43:211-317; PMID:16169932; http://dx.doi.org/10.1136/jmg.2005.036160
  • Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang C-P, Zhao Y, Swigut T, Wysocka J. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 2010; 463:958-62; PMID:20130577; http://dx.doi.org/10.1038/nature08733
  • Siebert JR, Graham JM, MacDonald C. Pathologic features of the CHARGE association: support for involvement of the neural crest. Teratology 1985; 31:331-6; PMID:4012643; http://dx.doi.org/10.1002/tera.1420310303
  • Sperry ED, Hurd EA, Durham MA, Reamer EN, Stein AB, Martin DM. The chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal development. Dev Dyn 2014; 243:1055-66; PMID:24975120; http://dx.doi.org/10.1002/dvdy.24156
  • Kang H-J, Feng Z, Sun Y, Atwal G, Murphy ME, Rebbeck TR, Rosenwaks Z, Levine AJ, Hu W. Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc Natl Acad Sci 2009; 106:9761-6; PMID:19470478; http://dx.doi.org/10.1073/pnas.0904280106
  • Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett 2014; 588:2571-9; PMID:24747423; http://dx.doi.org/10.1016/j.febslet.2014.04.014
  • Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, Wei C, Tesar PJ, Hatzoglou M, Martin DM, et al. CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet 2010; 19:3491-501; PMID:20591827; http://dx.doi.org/10.1093/hmg/ddq265
  • Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey J-P, Glynn EF, Ellington L, Du C, Dixon J, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008; 14:125-33; PMID:18246078; http://dx.doi.org/10.1038/nm1725
  • Layman WS, Hurd EA, Martin DM. Chromodomain proteins in development: lessons from CHARGE syndrome. Clin Genet 2010; 78:11-20; PMID:20507341; http://dx.doi.org/10.1111/j.1399-0004.2010.01446.x
  • Nishiyama M, Oshikawa K, Tsukada Y-I, Nakagawa T, Iemura S-I, Natsume T, Fan Y, Kikuchi A, Skoultchi AI, Nakayama KI. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat Cell Biol 2009; 11:172-82; PMID:19151705; http://dx.doi.org/10.1038/ncb1831
  • Polo SE, Kaidi A, Baskcomb L, Galanty Y, Jackson SP. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J 2010; 29:3130-9; PMID:20693977; http://dx.doi.org/10.1038/emboj.2010.188
  • Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D, Bredel M, Vogel H, Mills AA. CHD5 Is a tumor suppressor at human 1p36. Cell 2007; 128:459-75; PMID:17289567; http://dx.doi.org/10.1016/j.cell.2006.11.052
  • Batsukh T, Pieper L, Koszucka AM, von Velsen N, Hoyer-Fender S, Elbracht M, Bergman JEH, Hoefsloot LH, Pauli S. CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome. Hum Mol Genet 2010; 19:2858-66; PMID:20453063; http://dx.doi.org/10.1093/hmg/ddq189
  • Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 2010; 16:59-66; PMID:19966810; http://dx.doi.org/10.1038/nm.2063
  • McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM, et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 2008; 40:963-70; PMID:18641651; http://dx.doi.org/10.1038/ng.188
  • Boultwood J, Pellagatti A, Wainscoat JS. Haploinsufficiency of ribosomal proteins and p53 activation in anemia: diamond-blackfan anemia and the 5q- syndrome. Adv Biol Regul 2012; 52:196-203; PMID:21930148; http://dx.doi.org/10.1016/j.advenzreg.2011.09.008
  • Danilova N, Sakamoto KM, Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 2008; 112(13):5228-37; PMID:18515656; http://dx.doi.org/ 18515656
  • Gaballa M, Besa E. Myelodysplastic syndromes with 5q deletion: pathophysiology and role of lenalidomide. Ann Hematol 2014; 93:723-33; PMID:24627193; http://dx.doi.org/10.1007/s00277-014-2022-3
  • Kadakia S, Helman SN, Badhey AK, Saman M, Ducic Y. Treacher collins syndrome: the genetics of a craniofacial disease. Int J Pediatr Otorhinolaryngol 2014; 78:893-8; PMID:24690222; http://dx.doi.org/10.1016/j.ijporl.2014.03.006
  • Pellagatti A, Marafioti T, Paterson JC, Barlow JL, Drynan LF, Giagounidis A, Pileri SA, Cazzola M, McKenzie ANJ, Wainscoat JS, et al. Induction of p53 and up-regulation of the p53 pathway in the human 5q− syndrome. 2010; 115(13):2721-3; http://dx.doi.org/10.1182/blood-2009-12-259705
  • Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berliner N, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011; 117(9):2567-76; PMID:21068437; http://dx.doi.org/10.1182/blood-2010-07-295238
  • Simeonova I, Jaber S, Draskovic I, Bardot B, Fang M, Bouarich-Bourimi R, Lejour V, Charbonnier L, Soudais C, Bourdon J-C, et al. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep 2013; 3:2046-58; PMID:23770245; http://dx.doi.org/10.1016/j.celrep.2013.05.028
  • Khincha PP, Savage SA. Genomic characterization of the inherited bone marrow failure syndromes. Semin Hematol 2013; 50:333-47; PMID:24246701; http://dx.doi.org/10.1053/j.seminhematol.2013.09.002
  • Chin L, Artandi SE, Shen Q, Tam A, Lee S-L, Gottlieb GJ, Greider CW, DePinho RA. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97:527-38; PMID:10338216; http://dx.doi.org/10.1016/S0092-8674(00)80762-X
  • Pereboom TC, van Weele LJ, Bondt A, MacInnes AW. A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization. Blood 2011; 118(20):5458-65; PMID:21921046; 10.1182/blood-2011-04-351460
  • Zhang Z, Huynh T, Baldini A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Dev (Cambridge, England) 2006; 133:3587-95; PMID:16914493
  • Gao S, Li X, Amendt B. Understanding the role of Tbx1 as a candidate gene for 22q11.2 deletion syndrome. Curr Allergy Asthma Rep 2013; 13:613-21; PMID:23996541; http://dx.doi.org/10.1007/s11882-013-0384-6
  • Caprio C, Baldini A. p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc Natl Acad Sci 2014; 111(37):13385-90; PMID:25197075; http://dx.doi.org/10.1073/pnas.1401923111
  • Morgan SC, Lee H-Y, Relaix F, Sandell LL, Levorse JM, Loeken MR. Cardiac outflow tract septation failure in Pax3-deficient embryos is due to p53-dependent regulation of migrating cardiac neural crest. Mech Dev 2008; 125:757-67; PMID:18672055; http://dx.doi.org/10.1016/j.mod.2008.07.003
  • Pani L, Horal M, Loeken MR. Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev 2002; 16:676-80; PMID:11914272; http://dx.doi.org/10.1101/gad.969302
  • Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31:391-406; PMID:20127975; http://dx.doi.org/10.1002/humu.21211
  • Wang XD, Morgan SC, Loeken MR. Pax3 Stimulates p53 ubiquitination and degradation independent of transcription. PLoS One 2011; 6:e29379; PMID:22216266; http://dx.doi.org/10.1371/journal.pone.0029379
  • Hamard P-J, Barthelery N, Hogstad B, Mungamuri SK, Tonnessen CA, Carvajal LA, Senturk E, Gillespie V, Aaronson SA, Merad M, et al. The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev 2013; 27:1868-85; PMID:24013501; http://dx.doi.org/10.1101/gad.224386.113
  • Liu D, Ou L, Clemenson GD, Chao C, Lutske ME, Zambetti GP, Gage FH, Xu Y. Puma is required for p53-induced depletion of adult stem cells. Nat Cell Biol 2010; 12:993-8; PMID:20818388; http://dx.doi.org/10.1038/ncb2100
  • Terzian T, Wang Y, Van Pelt CS, Box NF, Travis EL, Lozano G. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol 2007; 27:5479-85; PMID:17526734; http://dx.doi.org/10.1128/MCB.00555-06
  • Liu G, Terzian T, Xiong S, Van Pelt CS, Audiffred A, Box NF, Lozano G. The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J Pathol 2007; 213:360-8; PMID:17893884; http://dx.doi.org/10.1002/path.2238
  • Mendrysa SM, McElwee MK, Michalowski J, O'Leary KA, Young KM, Perry ME. mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 2003; 23:462-72; PMID:12509446; http://dx.doi.org/10.1128/MCB.23.2.462-473.2003
  • Mendrysa SM, O'Leary KA, McElwee MK, Michalowski J, Eisenman RN, Powell DA, Perry ME. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev 2006; 20:16-21; PMID:16391230; http://dx.doi.org/10.1101/gad.1378506
  • Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002; 415:45-53; PMID:11780111; http://dx.doi.org/10.1038/415045a
  • Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H. Modulation of mammalian life span by the short isoform of p53. Genes Dev 2004; 18:306-19; PMID:14871929; http://dx.doi.org/10.1101/gad.1162404
  • Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, Criado LM, Klatt P, Flores JM, Weill J-C, Blasco MA, Serrano M. 'Super p53' mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 2002; 21:6225-35; PMID:12426394; http://dx.doi.org/10.1093/emboj/cdf595
  • Venkatachalam S, Shi Y-P, Jones SN, Vogel H, Bradley A, Pinkel D, Donehower LA. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J 1998; 17:4657-67; PMID:9707425; http://dx.doi.org/10.1093/emboj/17.16.4657
  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 1995; 10:175-80; PMID:7663512; http://dx.doi.org/10.1038/ng0695-175
  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 1995; 5:931-6; PMID:7583151; http://dx.doi.org/10.1016/S0960-9822(95)00183-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.