2,257
Views
18
CrossRef citations to date
0
Altmetric
Reports

Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity

, , &
Pages 2773-2779 | Received 09 May 2014, Accepted 16 Jun 2014, Published online: 30 Oct 2014

References

  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37:614-36; PMID: 14315085; http://dx.doi.org/10.1016/0014-4827(65)90211-9
  • Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011; 192:547-56; PMID: 21321098; http://dx.doi.org/10.1083/jcb.201009094
  • Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8:729-40; PMID: 17667954; http://dx.doi.org/10.1038/nrm2233
  • d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426:194-8; PMID: 14608368; http://dx.doi.org/10.1038/nature02118
  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol cell 2004; 14:501-13; PMID: 15149599; http://dx.doi.org/10.1016/S1097-2765(04)00256-4
  • Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012; 14:355-65; PMID: 22426077; http://dx.doi.org/10.1038/ncb2466
  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88:593-602; PMID: 9054499; http://dx.doi.org/10.1016/S0092-8674(00)81902-9
  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre' M, Nuciforo PG, Bensimon A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444:638-42; PMID: 17136094; http://dx.doi.org/10.1038/nature05327
  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995; 92:9363-7; PMID: 7568133; http://dx.doi.org/10.1073/pnas.92.20.9363
  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 1996; 16:859-67; PMID: 8622687
  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 1996; 93:13742-7; PMID: 8943005; http://dx.doi.org/10.1073/pnas.93.24.13742
  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113:703-16; PMID: 12809602; http://dx.doi.org/10.1016/S0092-8674(03)00401-X
  • Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrison C. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. Embo J 2004; 23:3864-73; PMID: 15359281; http://dx.doi.org/10.1038/sj.emboj.7600393
  • Ohshima S, Seyama A. Cellular aging and centrosome aberrations. Ann N Y Acad Sci 2010; 1197:108-17; PMID: 20536839; http://dx.doi.org/10.1111/j.1749-6632.2009.05396.x
  • Nigg EA, Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011; 13:1154-60; PMID: 21968988; http://dx.doi.org/10.1038/ncb2345
  • Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 2009; 137:32-45; PMID: 19345185; http://dx.doi.org/10.1016/j.cell.2009.03.023
  • Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010; 11:331-44; PMID: 20395968; http://dx.doi.org/10.1038/nrg2774
  • Kobayashi T, Dynlacht BD. Regulating the transition from centriole to basal body. J Cell Biol 2011; 193:435-44; PMID: 21536747; http://dx.doi.org/10.1083/jcb.201101005
  • Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 2010; 329:436-9; PMID: 20558667; http://dx.doi.org/10.1126/science.1191054
  • Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 2011; 12:393-406; PMID: 21502959; http://dx.doi.org/10.1038/nrg2984
  • Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007; 317:372-6; PMID: 17641202; http://dx.doi.org/10.1126/science.1139740
  • Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate smoothened functions at the primary cilium. Nature 2005; 437:1018-21; PMID: 16136078; http://dx.doi.org/10.1038/nature04117
  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426:83-7; PMID: 14603322; http://dx.doi.org/10.1038/nature02061
  • Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci 2010; 123:511-8; PMID: 20144999; http://dx.doi.org/10.1242/jcs.061093
  • Conroy PC, Saladino C, Dantas TJ, Lalor P, Dockery P, Morrison CG. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle 2012; 11:3769-78; PMID: 23070519; http://dx.doi.org/10.4161/cc.21986
  • Mahjoub MR, Stearns T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol 2012; 22:1628-34; PMID: 22840514; http://dx.doi.org/10.1016/j.cub.2012.06.057
  • Ogura A, Takahashi K. Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature 1976; 264:170-2; PMID: 995200; http://dx.doi.org/10.1038/264170a0
  • Spektor A, Tsang WY, Khoo D, Dynlacht BD. Cep97 and CP110 suppress a cilia assembly program. Cell 2007; 130:678-90; PMID: 17719545; http://dx.doi.org/10.1016/j.cell.2007.06.027
  • Tsang WY, Bossard C, Khanna H, Peranen J, Swaroop A, Malhotra V, Dynlacht BD. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell 2008; 15:187-97; PMID: 18694559; http://dx.doi.org/10.1016/j.devcel.2008.07.004
  • Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 2002; 3:339-50; PMID: 12361598; http://dx.doi.org/10.1016/S1534-5807(02)00258-7
  • Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Jr., Dlugosz AA, Reiter JF. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009; 15:1055-61; PMID: 19701205; http://dx.doi.org/10.1038/nm.2011
  • Bishop CL, Bergin AM, Fessart D, Borgdorff V, Hatzimasoura E, Garbe JC, Stampfer MR, Koh J, Beach DH. Primary cilium-dependent and -independent Hedgehog signaling inhibits p16(INK4A). Molecular cell 2010; 40:533-47; PMID: 21095584; http://dx.doi.org/10.1016/j.molcel.2010.10.027
  • Leonard JM, Ye H, Wetmore C, Karnitz LM. Sonic Hedgehog signaling impairs ionizing radiation-induced checkpoint activation and induces genomic instability. J Cell Biol 2008; 183:385-91; PMID: 18955550; http://dx.doi.org/10.1083/jcb.200804042
  • Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16:2743-8; PMID: 12414725; http://dx.doi.org/10.1101/gad.1025302
  • Loffler H, Lukas J, Bartek J, Kramer A. Structure meets function–centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 2006; 312:2633-40; PMID: 16854412; http://dx.doi.org/10.1016/j.yexcr.2006.06.008
  • Dashti M, Peppelenbosch MP, Rezaee F. Hedgehog signalling as an antagonist of ageing and its associated diseases. BioEssays: News Rev Mol, Cell Dev Biol 2012; 34:849-56; PMID: 22903465; http://dx.doi.org/10.1002/bies.201200049
  • Zhang H, Herbert BS, Pan KH, Shay JW, Cohen SN. Disparate effects of telomere attrition on gene expression during replicative senescence of human mammary epithelial cells cultured under different conditions. Oncogene 2004; 23:6193-8; PMID: 15195144; http://dx.doi.org/10.1038/sj.onc.1207834
  • Kiprilov EN, Awan A, Desprat R, Velho M, Clement CA, Byskov AG, Andersen CY, Satir P, Bouhassira EE, Christensen ST, et al. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J Cell Biol 2008; 180:897-904; PMID: 18332216; http://dx.doi.org/10.1083/jcb.200706028
  • Goto H, Inoko A, Inagaki M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci 2013; 70:3893-905; PMID: 23475109; http://dx.doi.org/10.1007/s00018-013-1302-8
  • Seeley ES, Carriere C, Goetze T, Longnecker DS, Korc M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer research 2009; 69:422-30; PMID: 19147554; http://dx.doi.org/10.1158/0008-5472.CAN-08-1290
  • Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 2007; 129:1351-63; PMID: 17604723; http://dx.doi.org/10.1016/j.cell.2007.04.035
  • Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, et al. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol 2012; 197:391-405; PMID: 22529102; http://dx.doi.org/10.1083/jcb.201106101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.